login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121081
Number of partitions of n into parts with at most one 1 and at most one 2.
2
1, 1, 2, 2, 3, 5, 6, 8, 11, 14, 18, 24, 30, 38, 49, 61, 76, 96, 118, 146, 181, 221, 270, 331, 401, 486, 589, 709, 852, 1025, 1225, 1463, 1746, 2075, 2463, 2922, 3453, 4077, 4808, 5656, 6644, 7798, 9130, 10678, 12475, 14547, 16942, 19714, 22898, 26570, 30798
OFFSET
1,3
COMMENTS
a(n) is also the number of partitions of n with no part equal to 2 or 4. [From Shanzhen Gao, Oct 28 2010]
FORMULA
a(n) = A121659(n) + A008483(n-3) for n>2. - Reinhard Zumkeller, Aug 14 2006
G.f.: (1+x)*(1+x^2)/Product_{k>=3} (1-x^k). - Vladeta Jovovic, Aug 13 2006
a(n) = A000041(n)-A000041(n-2)-A000041(n-4)+A000041(n-6), n>5. - Vladeta Jovovic, Aug 13 2006
Given by p(n)-p(n-2)-p(n-4)+p(n-6) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (3^(3/2) * n^2). - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
a(8)=#{8,7+1,6+2,5+3,5+2+1,4+4,4+3+1,3+3+2}=8;
a(9)=#{9,8+1,7+2,6+3,6+2+1,5+4,5+3+1,4+4+1,4+3+2,3+3+3,3+3+2+1}=11.
CROSSREFS
Cf. A027336.
Sequence in context: A052337 A308858 A192432 * A330952 A118399 A278298
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 11 2006
STATUS
approved