login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121080
a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + (1-2^n)*2^(n-1)*n!.
2
1, 4, 37, 541, 10625, 258661, 7464625, 248318309, 9339986689, 391569431365, 18095180332721, 913513359466885, 50008961524486849, 2950209091316054309, 186558089772409191985, 12587159519294553302821, 902488447534988078746625, 68518909362619336345906309
OFFSET
0,2
LINKS
Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.
MATHEMATICA
Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + (1 - 2^#)*2^(# - 1)*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)
PROG
(PARI) a(n) = (1-2^n)*2^(n-1)*n! + sum(i=0, n, binomial(n, i)^2*i!*4^i); \\ Michel Marcus, May 31 2018
CROSSREFS
Sequence in context: A277638 A352237 A349714 * A001518 A185082 A377741
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2006
STATUS
approved