|
|
A121080
|
|
a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + (1-2^n)*2^(n-1)*n!.
|
|
2
|
|
|
1, 4, 37, 541, 10625, 258661, 7464625, 248318309, 9339986689, 391569431365, 18095180332721, 913513359466885, 50008961524486849, 2950209091316054309, 186558089772409191985, 12587159519294553302821, 902488447534988078746625, 68518909362619336345906309
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..363
Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.
|
|
MATHEMATICA
|
Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + (1 - 2^#)*2^(# - 1)*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)
|
|
PROG
|
(PARI) a(n) = (1-2^n)*2^(n-1)*n! + sum(i=0, n, binomial(n, i)^2*i!*4^i); \\ Michel Marcus, May 31 2018
|
|
CROSSREFS
|
Cf. A102773, A121079.
Sequence in context: A277638 A352237 A349714 * A001518 A185082 A259822
Adjacent sequences: A121077 A121078 A121079 * A121081 A121082 A121083
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Aug 11 2006
|
|
STATUS
|
approved
|
|
|
|