The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277638 Binomial partial sums of sequence A007004. 0
 1, 4, 37, 520, 8803, 165292, 3320023, 69943804, 1526981575, 34271322316, 786371041603, 18372739163632, 435772652437381, 10468369504009060, 254238148448959729, 6233226769739934964, 154092763036678601551, 3837301178450916902428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..17. FORMULA a(n) = Sum_{k=0..n} binomial(n,k) * multinomial(k,k,k)/(k+1). a(n) = hypergeometric(1/3,2/3,-n; 1,2; -27). a(n) == 1 (mod 3) for all natural n. E.g.f.: exp(t) * hypergeometric(1/3,2/3; 1,2; 27*t). From Vaclav Kotesovec, Oct 26 2016: (Start) Recurrence: n*(n+1)*a(n) = 2*(3*n-1)*(5*n-3)*a(n-1) - (n-1)*(57*n-56)*a(n-2) + 28*(n-2)*(n-1)*a(n-3). a(n) ~ 2^(2*n+3) * 7^(n+2) / (3^(11/2) * Pi * n^2). (End) Diff. eq. satisfied by the ordinary g.f.: t*(1-t)^2*(1-28*t)*A''(t)+2*(1-t)*(1-2*t)*(1-28*t)*A'(t)-2*(4-29*t+28*t^2)*A(t)=0. - Emanuele Munarini, Oct 28 2016 MATHEMATICA Table[Sum[Binomial[n, k] Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}] PROG (Maxima) makelist(sum(binomial(n, k)*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12); CROSSREFS Cf. A007004. Sequence in context: A316877 A349254 A365778 * A352237 A349714 A121080 Adjacent sequences: A277635 A277636 A277637 * A277639 A277640 A277641 KEYWORD nonn AUTHOR Emanuele Munarini, Oct 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 9 21:06 EDT 2024. Contains 375765 sequences. (Running on oeis4.)