|
|
A277641
|
|
Numbers k > 2 such that the Diophantine equation x^2 + 2^a * 5^b * 13^c = y^k has one or more solutions for nonnegative a, b, c with x, y > 0 and gcd(x, y) = 1.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See Theorem 1 in Goins, Luca, Togbe.
|
|
LINKS
|
Table of n, a(n) for n=1..7.
E. Goins, F. Luca and A. Togbe, On the Diophantine Equation x^2 + 2^alpha 5^beta 13^gamma = y^n, in: A. J. van der Poorten and Andreas Stein, Algorithmic Number Theory, Springer-Verlag Berlin Heidelberg, 2008, DOI: 10.1007/978-3-540-79456-1
E. Goins, F. Luca and A. Togbe, On the Diophantine Equation x^2 + 2^alpha 5^beta 13^gamma = y^n, in: A. Shallue, "An Improved Multi-set Algorithm for the Dense Subset Sum Problem", Springer-Verlag, 430-442
|
|
CROSSREFS
|
Cf. A277642.
Sequence in context: A044951 A138308 A039084 * A085627 A057825 A082464
Adjacent sequences: A277638 A277639 A277640 * A277642 A277643 A277644
|
|
KEYWORD
|
nonn,fini,full
|
|
AUTHOR
|
Felix Fröhlich, Oct 25 2016
|
|
STATUS
|
approved
|
|
|
|