login
A277641
Numbers k > 2 such that the Diophantine equation x^2 + 2^a * 5^b * 13^c = y^k has one or more solutions for nonnegative a, b, c with x, y > 0 and gcd(x, y) = 1.
1
3, 4, 5, 6, 7, 8, 12
OFFSET
1,1
COMMENTS
See Theorem 1 in Goins, Luca, Togbe.
LINKS
E. Goins, F. Luca and A. Togbe, On the Diophantine Equation x^2 + 2^alpha 5^beta 13^gamma = y^n, in: A. J. van der Poorten and Andreas Stein, Algorithmic Number Theory, Springer-Verlag Berlin Heidelberg, 2008, DOI: 10.1007/978-3-540-79456-1
E. Goins, F. Luca and A. Togbe, On the Diophantine Equation x^2 + 2^alpha 5^beta 13^gamma = y^n, in: A. Shallue, "An Improved Multi-set Algorithm for the Dense Subset Sum Problem", Springer-Verlag, 430-442
CROSSREFS
Cf. A277642.
Sequence in context: A044951 A138308 A039084 * A085627 A057825 A082464
KEYWORD
nonn,fini,full
AUTHOR
Felix Fröhlich, Oct 25 2016
STATUS
approved