login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277639
Double binomial partial sums of A007004.
0
1, 4, 43, 718, 14779, 344452, 8725093, 234594766, 6596287411, 192032529388, 5747827847545, 175986201591130, 5490952102178725, 174077883157001740, 5594651323154783515, 181946073109880839450, 5978730547304013537475, 198263347772478727193740, 6628299876919271425393105, 223211734849614639629628010, 7566093949269408444819804937
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)^2*multinomial(k,k,k)/(k+1).
a(n) = hypergeometric(1/3,2/3,-n,-n;1,1,2;27).
Double e.g.f.: BesselI(0,2*sqrt(t))*hypergeometric(1/3,2/3;1,1,2;27*t).
D-finite with recurrence: n^2*(n+1)^2*(1058*n^4 - 7061*n^3 + 16158*n^2 - 14048*n + 3284)*a(n) = 2*n*(30682*n^7 - 219052*n^6 + 555798*n^5 - 545060*n^4 + 16565*n^3 + 323730*n^2 - 206943*n + 39408)*a(n-1) - (834762*n^8 - 7954803*n^7 + 30596846*n^6 - 59518007*n^5 + 57023894*n^4 - 13636388*n^3 - 20674168*n^2 + 16952656*n - 3600432)*a(n-2) + 2*(n-2)^2*(744832*n^6 - 5313736*n^5 + 13458434*n^4 - 12947434*n^3 - 64535*n^2 + 6504872*n - 2110473)*a(n-3) - 676*(n-3)^2*(n-2)^2*(1058*n^4 - 2829*n^3 + 1323*n^2 + 1317*n - 609)*a(n-4). - Vaclav Kotesovec, Oct 30 2016
a(n) ~ sqrt(205/162 + 1939/(729*sqrt(3))) * (28+6*sqrt(3))^n / (Pi^(3/2)*n^(5/2)). - Vaclav Kotesovec, Oct 30 2016
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n, k)^2*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A007004.
Sequence in context: A130545 A027311 A198205 * A326432 A074702 A197717
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 25 2016
STATUS
approved