|
|
A130545
|
|
Numerators of 2*Sum_{k=1..n} 1/binomial(2*k,k), n >= 1.
|
|
2
|
|
|
1, 4, 43, 307, 463, 10201, 24121, 88453, 1503743, 28571327, 680271, 54761843, 156462429, 111170677, 245020174253, 7595625419003, 2531875141141, 17723125990639, 655755661678837, 655755661685297, 867289746102097
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Partial sums (in lowest terms) for a series of (2/27)*(9+2*Pi*sqrt(3)).
The rationals r(n) = 2*Sum_{k=1..n} 1/binomial(2*k,k) tend, in the limit n->infinity, to (2/27)*(9 + 2*Pi*sqrt(3)), which is approximately 1.472799718.
|
|
REFERENCES
|
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise (with a misprint).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = numerator(r(n)), n >= 1, with the rationals defined above.
|
|
EXAMPLE
|
Rationals r(n): 1, 4/3, 43/30, 307/210, 463/315, 10201/6930, 24121/16380, ....
|
|
MATHEMATICA
|
Numerator[Table[2*Sum[1/Binomial[2k, k], {k, n}], {n, 30}]] (* Harvey P. Dale, Jul 30 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|