OFFSET
0,5
COMMENTS
a(n) = Sum(k*A186766(n,k), k>=0).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: g(z)=[log((1+z)/(1-z))-2sinh(z)]/(2(1-z)).
a(n) ~ n!/2 * (log(2*n) + gamma - exp(1) + exp(-1)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 07 2013
EXAMPLE
a(3)=1 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), and (132) we have a total of 0+0+0+0+0+1 =1 increasing odd cycles.
MAPLE
g := ((ln((1+z)/(1-z))-2*sinh(z))*1/2)/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
MATHEMATICA
CoefficientList[Series[(Log[(1+x)/(1-x)]-2*Sinh[x])/(2*(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 27 2011
EXTENSIONS
Typo in e.g.f. corrected by Vaclav Kotesovec, Oct 07 2013
STATUS
approved