OFFSET
0,8
LINKS
Alois P. Heinz, Rows n = 0..170, flattened
FORMULA
E.g.f.: G(t,z) = exp((t-1)*sinh z)/(1-z).
The 5-variate e.g.f. H(x,y,u,v,z) of permutations with respect to size (marked by z), number of increasing odd cycles (marked by x), number of increasing even cycles (marked by y), number of nonincreasing odd cycles (marked by u), and number of nonincreasing even cycles (marked by v), is given by
H(x,y,u,v,z)=exp(((x-u)sinh z + (y-v)(cosh z - 1))*(1+z)^{(u-v)/2}/(1-z)^{(u+v)/2}.
EXAMPLE
T(3,1)=4 because we have (1)(23), (12)(3), (13)(2), and (123).
T(4,1)=4 because we have (1)(243), (143)(2), (142)(3), and (132)(4).
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 4, 0, 1;
9, 4, 10, 0, 1;
33, 56, 10, 20, 0, 1;
...
MAPLE
g := exp((t-1)*sinh(z))/(1-z): gser := simplify(series(g, z = 0, 13)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-j)*(
`if`(j::odd, x-1, 0)+(j-1)!)*binomial(n-1, j-1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..14); # Alois P. Heinz, May 12 2017
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*(If[OddQ[j], x - 1, 0] + (j - 1)!)*Binomial[n - 1, j - 1], {j, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 27 2011
STATUS
approved