login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121408
Triangle T(n,k) defined by the generating function (in Maple notation): exp(y*arcsin(x))-1 = sum( sum(T(n,k)*y^k, k=1..n)*x^n/n!, n=1..infinity).
4
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 9, 0, 10, 0, 1, 0, 64, 0, 20, 0, 1, 225, 0, 259, 0, 35, 0, 1, 0, 2304, 0, 784, 0, 56, 0, 1, 11025, 0, 12916, 0, 1974, 0, 84, 0, 1, 0, 147456, 0, 52480, 0, 4368, 0, 120, 0, 1, 893025, 0, 1057221, 0, 172810, 0, 8778, 0, 165, 0, 1, 0, 14745600, 0
OFFSET
1,8
COMMENTS
Row sums are equal to A006228(n). This is sequence A091885 with additional intertwining zeros.
F(n,m) = n!*T(n,m)/m! is a composite (akin to Riordan arrays) of F(x)=arcsin(x) and (F(x))^m = sum{n=m..infinity} F(n,m)*x^n, and for o.g.f. G(x), G(arcsin(x)) = g(0) +sum_{n=1..infinity} sum_{m=1..n} F(n,m)*g(m)*x^n, see the preprint. - Vladimir Kruchinin, Feb 10 2011
The unsigned matrix inverse is A136630 (with a different offset) - Peter
Bala, Feb 23 2011.
Also the Bell transform of A177145. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
T(n,m)= ((n-1)!/(m-1)!) *sum_{k=1..n-m} sum_{j=1..k} binomial(k,j) *(2^(1-j) /(n-m+j)!) *sum{i=0..floor(j/2)} (-1)^((n-m)/2-i-j) *binomial(j,i) *(j-2*i)^(n-m+j) *binomial(k+n-1,n-1), n>m and even(n-m). [From Vladimir Kruchinin, Feb 10 2011]
From Peter Bala, Aug 29 2012: (Start)
See A182971 for a version of the row reverse of this triangle.
Even-indexed row polynomial R(2*n,x) = x^2*prod(k=1..n-1, (x^2 + (2*k)^2) ).
Odd-indexed row polynomial R(2*n+1,x) = x*prod(k=1..n, (x^2 + (2*k-1)^2) ). See Berndt p.263. (End)
EXAMPLE
Triangle starts:
1;
0,1;
1,0,1;
0,4,0,1;
9,0,10,0,1;
0,64,0,20,0,1;
Row polynomials R(6,x) = x^2*(x^2 + 2^2)*(x^2 + 4^2) = 64*x^2 + 20*x^4 + x^6 and
R(7,x) = x*(x^2 + 1)*(x^2 + 3^2)*(x^2 + 5^2) = 225*x + 259*x^3 + 35*x^5 + x^7. - Peter Bala, Aug 29 2012
MAPLE
g:=exp(y*arcsin(x))-1: gser:=simplify(series(g, x=0, 15)): for n from 1 to 12 do P[n]:=sort(n!*coeff(gser, x, n)) od: for n from 1 to 12 do seq(coeff(P[n], y, k), k=1..n) od; # yields sequence in triangular form
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n::odd, 0, doublefactorial(n-1)^2), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[OddQ[#], 0, (# - 1)!!^2] &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 28 2006
STATUS
approved