OFFSET
0,5
COMMENTS
FORMULA
For n even, let Q(n) = Product_{i=1..n/2} (x - (2*i)^2) and for n odd let Q(n) = Product_{i=0..(n-1)/2} (x - (2i+1)^2). n-th row of triangle gives coefficients in expansion of Q(n).
EXAMPLE
Triangle begins:
1
1, -1
1, -4
1, -10, 9
1, -20, 64
1, -35, 259, -225
1, -56, 784, -2304
1, -84, 1974, -12916, 11025
1, -120, 4368, -52480, 147456
1, -165, 8778, -172810, 1057221, -893025
1, -220, 16368, -489280, 5395456, -14745600
...
E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
MAPLE
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2, i=1..n/2)));
else sort(expand(mul(x-(2*i+1)^2, i=0..(n-1)/2))); fi;
for n from 0 to 12 do
t1:=eval(Q(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y, t1); t2:=seriestolist(series(t12, y, 20));
lprint(t2);
od:
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Feb 01 2011
STATUS
approved