login
Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.
5

%I #20 Aug 29 2012 07:25:12

%S 1,1,-1,1,-4,1,-10,9,1,-20,64,1,-35,259,-225,1,-56,784,-2304,1,-84,

%T 1974,-12916,11025,1,-120,4368,-52480,147456,1,-165,8778,-172810,

%U 1057221,-893025,1,-220,16368,-489280,5395456,-14745600,1,-286,28743,-1234948,21967231,-128816766,108056025,1,-364,48048,-2846272,75851776,-791691264,2123366400

%N Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.

%C These are scaled versions of the central factorial numbers in A008955 and A008956.

%C Even-indexed rows give A182867, odd-indexed rows give A008956.

%C A121408 is an unsigned and aerated version of the row reverse of this triangle. - _Peter Bala_, Aug 29 2012

%F For n even, let Q(n) = Product_{i=1..n/2} (x - (2*i)^2) and for n odd let Q(n) = Product_{i=0..(n-1)/2} (x - (2i+1)^2). n-th row of triangle gives coefficients in expansion of Q(n).

%e Triangle begins:

%e 1

%e 1, -1

%e 1, -4

%e 1, -10, 9

%e 1, -20, 64

%e 1, -35, 259, -225

%e 1, -56, 784, -2304

%e 1, -84, 1974, -12916, 11025

%e 1, -120, 4368, -52480, 147456

%e 1, -165, 8778, -172810, 1057221, -893025

%e 1, -220, 16368, -489280, 5395456, -14745600

%e ...

%e E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.

%p Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));

%p else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;

%p for n from 0 to 12 do

%p t1:=eval(Q(n)); t1d:=degree(t1);

%p t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));

%p lprint(t2);

%p od:

%Y Even-indexed rows give A182867, odd-indexed rows give A008956.

%Y Column 1,4,10,20, ... is A000292. The next two columns give A181888, A184878. The last diagonal is A184877.

%Y Cf. A008955, A008956. A121408.

%K sign,tabf

%O 0,5

%A _N. J. A. Sloane_, Feb 01 2011