login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182970
G.f.: A(x) = Product_{n>=1} 1/(1 - A_n(x)^n) where A_n(x) denotes the n-th iteration of A(x): A_n(x) = A_{n-1}(A(x)) with A_0(x)=x.
1
1, 1, 3, 12, 61, 365, 2477, 18566, 150940, 1314016, 12135518, 118077620, 1204031386, 12814054072, 141872524160, 1629774749836, 19383459694769, 238243063976805, 3021510752477432, 39488027180606978, 531178015089101579, 7346877516617129889
OFFSET
1,3
FORMULA
G.f.: A(x) = x*exp( Sum_{n>=1} Sum_{d|n} d*A_d(x)^n/n ) where A_n(x) denotes the n-th iteration of A(x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 61*x^5 + 365*x^6 +...
Let A_n(x) denote the n-th iteration of g.f. A(x), then
the logarithm of A(x)/x begins:
log(A(x)/x) = A(x) + [A(x)^2 + 2*A_2(x)^2]/2 + [A(x)^3 + 3*A_3(x)^3]/3 + [A(x)^4 + 2*A_2(x)^4 + 4*A_4(x)^4]/4 + [A(x)^5 + 5*A_5(x)^5]/5 +...
Explicitly,
log(A(x)/x) = x + 5*x^2/2 + 28*x^3/3 + 189*x^4/4 + 1431*x^5/5 + 11858*x^6/6 + 105533*x^7/7 + 996541*x^8/8 + 9901306*x^9/9 + 102895485*x^10/10 +...
The initial iterations of A(x) begin:
A(A(x)) = x + 2*x^2 + 8*x^3 + 40*x^4 + 236*x^5 + 1571*x^6 +...
A_3(x) = x + 3*x^2 + 15*x^3 + 90*x^4 + 613*x^5 + 4586*x^6 +...
A_4(x) = x + 4*x^2 + 24*x^3 + 168*x^4 + 1304*x^5 + 10926*x^6 +...
A_5(x) = x + 5*x^2 + 35*x^3 + 280*x^4 + 2445*x^5 + 22775*x^6 +...
A_6(x) = x + 6*x^2 + 48*x^3 + 432*x^4 + 4196*x^5 + 43105*x^6 +...
A_7(x) = x + 7*x^2 + 63*x^3 + 630*x^4 + 6741*x^5 + 75796*x^6 +...
A_8(x) = x + 8*x^2 + 80*x^3 + 880*x^4 + 10288*x^5 + 125756*x^6 +...
The g.f. equals the product:
A(x) = x/[(1 - A(x))*(1 - A(A(x))^2))*(1 - A(A(A(x)))^3)*(1 - A(A(A(A(x))))^4)* ...*(1 - A_n(x)^n)*...]
where A_n(x) equals the n-th iteration of A(x).
PROG
(PARI) /* n-th Iteration of a function: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* G.f.: */
{a(n)=local(F=x+x^2+x*O(x^n)); for(i=0, n, F=x*exp(sum(m=1, n+1, 1/m*sumdiv(m, d, d*ITERATE(d, F, n)^m)))); polcoeff(F, n)}
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x/prod(k=1, n, 1-ITERATE(k, A, n)^k)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A161799 A378889 A378828 * A159925 A331607 A235802
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 18 2010
EXTENSIONS
Name changed by Paul D. Hanna, Dec 19 2010
STATUS
approved