login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161799
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^2)^3.
3
1, 3, 12, 61, 345, 2085, 13182, 86106, 576543, 3936029, 27294390, 191722887, 1361291244, 9754412169, 70447946556, 512278417176, 3747570671685, 27561220671408, 203657352324178, 1511270129552163, 11257532921742528
OFFSET
0,2
LINKS
Vaclav Kotesovec, Recurrence
FORMULA
a(n) = Sum_{k=0..n} C(3*n-2*k+2,k)/(n-k+1) * C(n+k-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n then
a(n,m) = Sum_{k=0..n} C(3*n-2*k+3*m-1,k)*m/(n-k+m) * C(n+k-1,n-k).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 8.01957328653868383... is the root of the equation 3125 + 22356*d - 162432*d^2 - 361584*d^3 - 326592*d^4 + 46656*d^5 = 0 and c = 1.56703431595354192843152170651865561188... - Vaclav Kotesovec, Sep 18 2013
MAPLE
A161799 := proc(n)
local s, t ;
s := 2 ;
t := 3;
add( binomial(t*n-(t-1)*(k-1), k) * binomial(n+(s-1)*k-1, n-k) /(n-k+1) , k=0..n) ;
end proc:
seq(A161799(n), n=0..40) ; # R. J. Mathar, May 12 2022
MATHEMATICA
Table[Sum[Binomial[3*n-2*k+2, k]/(n-k+1)*Binomial[n+k-1, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) {a(n, m=1)=sum(k=0, n, binomial(3*n-2*k+3*m-1, k)*m/(n-k+m)*binomial(n+k-1, n-k))}
CROSSREFS
Sequence in context: A348200 A218092 A192479 * A378889 A378828 A182970
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2009
STATUS
approved