login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192479
a(n) = 2^n*C(n-1) - A186997(n-1), where C(n) are the Catalan numbers (A000108).
2
1, 3, 12, 61, 344, 2074, 13080, 85229, 569264, 3876766, 26817304, 187908802, 1330934032, 9513485076, 68539442800, 497178707325, 3628198048352, 26617955242806, 196205766112536, 1452410901340598, 10792613273706320
OFFSET
1,2
COMMENTS
a(n) is the number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions connected by the binary connective of implication.
FORMULA
a(n) = 2^n*C(n) - f(n), with f(n) = Sum_{i=1..n-1} (2^i*C(i)-f(i))*f(n-i), starting f(0)=f(1)=1, where C(i) = A000108(i-1).
G.f.: 1 - 1/A186997(x). - Vladimir Kruchinin, Feb 17 2013
a(n+1) = Sum_{k=1..n+1} (binomial(k,n-k+1)*binomial(n+2*k-1,k))/(n+k), a(1)=1. - Vladimir Kruchinin, May 15 2014
MAPLE
C := proc(n) binomial(2*n, n)/(n+1) ; end proc:
Yildf := proc(n) option remember; if n<=1 then 1; else add( (2^i*C(i-1)-procname(i))*procname(n-i), i=1..n-1) ; end if; end proc:
A192479 := proc(n) 2^n*C(n-1)-Yildf(n) ; end proc:
seq(A192479(n), n=1..30) ; # R. J. Mathar, Jul 13 2011
MATHEMATICA
a[1] = 1; a[n_] := 2^n*CatalanNumber[n-1] - Sum[Binomial[k, n-k-1]*Binomial[n+2*k-1, n+k-1]/(n+k), {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2015 *)
CROSSREFS
Cf. A186997.
Sequence in context: A228251 A348200 A218092 * A161799 A378889 A378828
KEYWORD
nonn
AUTHOR
Volkan Yildiz, Jul 01 2011
STATUS
approved