login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n*C(n-1) - A186997(n-1), where C(n) are the Catalan numbers (A000108).
2

%I #51 Jun 10 2021 22:32:54

%S 1,3,12,61,344,2074,13080,85229,569264,3876766,26817304,187908802,

%T 1330934032,9513485076,68539442800,497178707325,3628198048352,

%U 26617955242806,196205766112536,1452410901340598,10792613273706320

%N a(n) = 2^n*C(n-1) - A186997(n-1), where C(n) are the Catalan numbers (A000108).

%C a(n) is the number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions connected by the binary connective of implication.

%H P. J. Cameron and V. Yildiz, <a href="https://arxiv.org/abs/1106.4443">Counting false entries in truth tables of bracketed formulas connected by implication</a>, arXiv:1106.4443 [math.CO], 2011.

%F a(n) = 2^n*C(n) - f(n), with f(n) = Sum_{i=1..n-1} (2^i*C(i)-f(i))*f(n-i), starting f(0)=f(1)=1, where C(i) = A000108(i-1).

%F G.f.: 1 - 1/A186997(x). - _Vladimir Kruchinin_, Feb 17 2013

%F a(n+1) = Sum_{k=1..n+1} (binomial(k,n-k+1)*binomial(n+2*k-1,k))/(n+k), a(1)=1. - _Vladimir Kruchinin_, May 15 2014

%p C := proc(n) binomial(2*n,n)/(n+1) ;end proc:

%p Yildf := proc(n) option remember; if n<=1 then 1; else add( (2^i*C(i-1)-procname(i))*procname(n-i),i=1..n-1) ; end if; end proc:

%p A192479 := proc(n) 2^n*C(n-1)-Yildf(n) ; end proc:

%p seq(A192479(n),n=1..30) ; # _R. J. Mathar_, Jul 13 2011

%t a[1] = 1; a[n_] := 2^n*CatalanNumber[n-1] - Sum[Binomial[k, n-k-1]*Binomial[n+2*k-1, n+k-1]/(n+k), {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Apr 02 2015 *)

%Y Cf. A186997.

%K nonn

%O 1,2

%A _Volkan Yildiz_, Jul 01 2011