login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192477
G.f. satisfies: A(x) = x*Product_{n>=1} (1 + x*A(x)^n).
2
1, 0, 1, 1, 2, 5, 9, 23, 49, 120, 279, 682, 1654, 4079, 10129, 25277, 63639, 160685, 408373, 1041197, 2666364, 6850405, 17657214, 45644461, 118303445, 307385607, 800463683, 2088900834, 5461793800, 14306839474, 37539357792, 98655089606
OFFSET
1,5
COMMENTS
Related q-series identity (Euler):
Product_{n>=1} (1+x*q^n) = Sum_{n>=0} x^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k); here q=A(x).
LINKS
FORMULA
G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 - A(x)^k).
G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(3*n+1)/2) * (1 + x*A(x)^(2*n+1)) * Product_{k=1..n} (1 + x*A(x)^k)/(1 - A(x)^k) due to Sylvester's identity.
a(n) ~ c * d^n / n^(3/2), where d = 2.7572424362046888622202089939389819515998799032935772914495266456251... and c = 0.141814541288727417106640836565322805487015901140336362320896774237... - Vaclav Kotesovec, Sep 29 2023
EXAMPLE
G.f.: A(x) = x + x^3 + x^4 + 2*x^5 + 5*x^6 + 9*x^7 + 23*x^8 + 49*x^9 +...
The g.f. A = A(x) satisfies the relations:
A = x*(1 + x*A)*(1 + x*A^2)*(1 + x*A^3)*(1 + x*A^4)*...
A = x*(1 + x*A/(1-A) + x^2*A^3/((1-A)*(1-A^2)) + x^3*A^6/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^10/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) +...)
A = x*(1+x*A) + x^2*A^2*(1+x*A^3)*(1+x*A)/(1-A) + x^3*A^7*(1+x*A^5)*(1+x*A)*(1+x*A^2)/((1-A)*(1-A^2)) + x^4*A^15*(1+x*A^7)*(1+x*A)*(1+x*A^2)*(1+x*A^3)/((1-A)*(1-A^2)*(1-A^3)) +...
MATHEMATICA
nmax = 40; A[_] = 0; Do[A[x_] = x*Product[1 + x*A[x]^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Sep 29 2023 *)
(* Calculation of constants {d, c}: *) {1/r, Sqrt[-s*((1 + r)*Log[1 - s] - Log[s] + (1 + r)*QPolyGamma[0, Log[-r]/Log[s], s]) / (2*Pi*r*Log[s] * Derivative[0, 2][QPochhammer][-r, s])]} /. FindRoot[{r*QPochhammer[-r, s] == s*(1 + r), r*Derivative[0, 1][QPochhammer][-r, s] == 1 + r}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] // Chop (* Vaclav Kotesovec, Sep 29 2023 *)
PROG
(PARI) {a(n) = my(A=x+x^2); for(i=1, n, A = x*prod(m=1, n, 1+x*A^m +x*O(x^n))); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = my(A=x+x^2); for(i=1, n, A = x*sum(m=0, n, x^m*A^(m*(m+1)/2)/prod(k=1, m, 1-A^k +x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n) = my(A=x+x^2); for(i=1, n, A = x*sum(m=0, n, x^m*A^(m*(3*m+1)/2)*(1+x*A^(2*m+1))*prod(k=1, m, (1+x*A^k)/(1-A^k +x*O(x^n))))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A374244 A088356 A246350 * A288109 A047044 A109621
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2011
STATUS
approved