login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145267
G.f. satisfies A(x) = Product_{k>0} (1+x^k*A(x)).
15
1, 1, 2, 5, 12, 30, 77, 201, 532, 1427, 3868, 10579, 29161, 80931, 225954, 634197, 1788453, 5064877, 14398536, 41074364, 117541744, 337337862, 970704394, 2800059428, 8095161902, 23452565124, 68076579332, 197965830430
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^n*(1 + x^(2n+1)*A(x))*Product_{k=1..n} (1 + x^k*A(x))/(1-x^k) due to Sylvester's identity. - Paul D. Hanna, May 20 2011
G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^n / Product_{k=1..n} (1-x^k). - Paul D. Hanna, Jul 01 2011
a(n) ~ c * d^n / n^(3/2), where d = 3.060735101304296413235... and c = 2.45762465379034328... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.32671889820646736561... = 1/d and A(r) = 3.6673575238633912689... satisfy (1) A(r) = 1 / Sum_{n>=1} r^n/(1 + r^n*A(r)) and (2) A(r) = Product_{n>=1} (1 + r^n*A(r)). - Paul D. Hanna, Mar 02 2024
EXAMPLE
From Paul D. Hanna, May 20 2011: (Start)
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 77*x^6 +...
G.f.: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))*(1+x^4*A(x))*...
G.f.: A(x) = (1+x*A(x)) + x^2*A(x)*(1 + x^3*A(x))*(1+x*A(x))/(1-x) + x^7*A(x)^2*(1 + x^5*A(x))*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^15*A(x)^3*(1 + x^7*A(x))*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +... (End)
G.f.: A(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +... - Paul D. Hanna, Jul 01 2011
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = Product[1 + x^k*A[x], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s, r] == s*(1 + s), Log[1 - r] + ((1 + 2*s)*Log[r])/(1 + s) + QPolyGamma[0, Log[-s]/Log[r], r] == 0}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+A*x^m+x*O(x^n)))); polcoeff(A, n)} /* Paul D. Hanna, May 20 2011 */
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(3*m+1)/2)*A^m*(1 + x^(2*m+1)*A)*prod(k=1, m, (1+A*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna, May 20 2011 */
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(m+1)/2)*A^m/prod(k=1, m, 1-x^k +x*O(x^n)))); polcoeff(A, n)} /* Paul D. Hanna, Jul 01 2011 */
CROSSREFS
Sequence in context: A253831 A024851 A188378 * A103287 A136704 A120895
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 05 2008
EXTENSIONS
More terms from Max Alekseyev, Jan 31 2010
STATUS
approved