login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = Product_{k>0} (1+x^k*A(x)).
15

%I #27 Mar 02 2024 03:21:09

%S 1,1,2,5,12,30,77,201,532,1427,3868,10579,29161,80931,225954,634197,

%T 1788453,5064877,14398536,41074364,117541744,337337862,970704394,

%U 2800059428,8095161902,23452565124,68076579332,197965830430

%N G.f. satisfies A(x) = Product_{k>0} (1+x^k*A(x)).

%H Vaclav Kotesovec, <a href="/A145267/b145267.txt">Table of n, a(n) for n = 0..250</a>

%F G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^n*(1 + x^(2n+1)*A(x))*Product_{k=1..n} (1 + x^k*A(x))/(1-x^k) due to Sylvester's identity. - _Paul D. Hanna_, May 20 2011

%F G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^n / Product_{k=1..n} (1-x^k). - _Paul D. Hanna_, Jul 01 2011

%F a(n) ~ c * d^n / n^(3/2), where d = 3.060735101304296413235... and c = 2.45762465379034328... - _Vaclav Kotesovec_, Aug 12 2021

%F Radius of convergence r = 0.32671889820646736561... = 1/d and A(r) = 3.6673575238633912689... satisfy (1) A(r) = 1 / Sum_{n>=1} r^n/(1 + r^n*A(r)) and (2) A(r) = Product_{n>=1} (1 + r^n*A(r)). - _Paul D. Hanna_, Mar 02 2024

%e From _Paul D. Hanna_, May 20 2011: (Start)

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 77*x^6 +...

%e G.f.: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))*(1+x^4*A(x))*...

%e G.f.: A(x) = (1+x*A(x)) + x^2*A(x)*(1 + x^3*A(x))*(1+x*A(x))/(1-x) + x^7*A(x)^2*(1 + x^5*A(x))*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^15*A(x)^3*(1 + x^7*A(x))*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +... (End)

%e G.f.: A(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +... - _Paul D. Hanna_, Jul 01 2011

%t nmax = 30; A[_] = 0; Do[A[x_] = Product[1 + x^k*A[x], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Sep 26 2023 *)

%t (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s, r] == s*(1 + s), Log[1 - r] + ((1 + 2*s)*Log[r])/(1 + s) + QPolyGamma[0, Log[-s]/Log[r], r] == 0}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Sep 26 2023 *)

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+A*x^m+x*O(x^n))));polcoeff(A,n)} /* _Paul D. Hanna_, May 20 2011 */

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^(m*(3*m+1)/2)*A^m*(1 + x^(2*m+1)*A)*prod(k=1,m,(1+A*x^k)/(1-x^k+x*O(x^n)))));polcoeff(A,n)} /* _Paul D. Hanna_, May 20 2011 */

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^(m*(m+1)/2)*A^m/prod(k=1,m,1-x^k +x*O(x^n))));polcoeff(A,n)} /* _Paul D. Hanna_, Jul 01 2011 */

%Y Cf. A145268, A190822.

%K nonn

%O 0,3

%A _Vladeta Jovovic_, Oct 05 2008

%E More terms from _Max Alekseyev_, Jan 31 2010