login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190822
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n) * (1 + x^(2n)*A(x)).
3
1, 1, 2, 4, 7, 14, 27, 53, 104, 208, 415, 836, 1690, 3434, 7004, 14342, 29460, 60707, 125443, 259883, 539689, 1123226, 2342493, 4894590, 10245321, 21481047, 45108768, 94863801, 199772929, 421245065, 889331420, 1879723964, 3977402460, 8424718846
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2) * Product_{k=1..n} (1 + x^k*A(x)) / (1 - x^k) due to a Lebesgue identity.
From Vaclav Kotesovec, Mar 03 2024: (Start)
Let A(x) = y, then 2*y*(1 + y) = QPochhammer(-1, x) * QPochhammer(-y, x^2).
a(n) ~ c * d^n / n^(3/2), where d = 2.20229791253644493239805950840417681972879718454582447550768622636671... and c = 9.92694112477002167508700773789825154871250555780774205172995613775...
Radius of convergence:
r = 1/d = 0.45407117461609608946909851977877786178200148047136427660297778018...
A(r) = s = 8.6584215712749049134273598177515922912152713325328273868580739614...
(End)
The values r and A(r) given above also satisfy A(r) = 1 / Sum_{n>=1} r^(2*n)/(1 + r^(2*n)*A(r)). - Paul D. Hanna, Mar 03 2024
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + ...
G.f.: A(x) = (1+x)*(1+x^2*A(x)) * (1+x^2)*(1+x^4*A(x)) * (1+x^3)*(1+x^6*A(x)) * ...
G.f.: A(x) = 1 + x*(1+x*A(x))/(1-x) + x^3*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^6*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
MATHEMATICA
nmax = 40; A[_] = 0; Do[A[x_] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 03 2024 *)
(* Calculation of constants {d, c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s) * Log[r^2]^2 * (s*(1 + s)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s, r^2]))/(2*Pi * QPochhammer[-1, r]* (s*Log[r^2]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r^2], r^2]))]} /. FindRoot[{2*s*(1 + s) == QPochhammer[-1, r]*QPochhammer[-s, r^2], 1 + s/(1 + s) + (Log[1 - r^2] + QPolyGamma[0, Log[-s]/Log[r^2], r^2])/Log[r^2] == 0}, {r, 1/2}, {s, 8}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 03 2024 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = prod(m=1, n, (1 + x^m) * (1 + x^(2*m)*A+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + sum(m=1, sqrtint(2*n), x^(m*(m+1)/2) * prod(k=1, m, (1 + A*x^k)/(1 - x^k +x*O(x^n))))); polcoeff(A, n)}
CROSSREFS
Cf. A145267.
Sequence in context: A108758 A018085 A167751 * A107949 A155099 A136322
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 21 2011
STATUS
approved