The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190822 G.f. satisfies: A(x) = Product_{n>=1} (1+x^n)*(1+x^(2n)*A(x)). 3
 1, 1, 2, 4, 7, 14, 27, 53, 104, 208, 415, 836, 1690, 3434, 7004, 14342, 29460, 60707, 125443, 259883, 539689, 1123226, 2342493, 4894590, 10245321, 21481047, 45108768, 94863801, 199772929, 421245065, 889331420, 1879723964, 3977402460, 8424718846 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*Product_{k=1..n} (1+x^k*A(x))/(1-x^k) due to a Lebesgue identity. EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 +... G.f.: A(x) = (1+x)*(1+x^2*A(x))* (1+x^2)*(1+x^4*A(x))* (1+x^3)*(1+x^6*A(x))*... G.f.: A(x) = 1 + x*(1+x*A(x))/(1-x) + x^3*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^6*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+x^m)*(1+x^(2*m)*A+x*O(x^n)))); polcoeff(A, n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(2*n), x^(m*(m+1)/2)*prod(k=1, m, (1+A*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)} CROSSREFS Cf. A145267. Sequence in context: A108758 A018085 A167751 * A107949 A155099 A136322 Adjacent sequences: A190819 A190820 A190821 * A190823 A190824 A190825 KEYWORD nonn AUTHOR Paul D. Hanna, May 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 05:09 EDT 2023. Contains 361434 sequences. (Running on oeis4.)