login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190824
Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 3.
2
1, 0, 0, 0, 1, 20, 292, 4317, 69862, 1251584, 24728326, 535333713, 12616277612, 321762301156, 8833356675295, 259803215904436, 8151872288855008, 271848098526643604, 9602477503845334715, 358185069617609239664, 14070369448248794118128, 580623906507508489287367
OFFSET
0,6
LINKS
Vaclav Kotesovec, Recurrence (of order 12)
Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016.
FORMULA
a(n) ~ 2^(n + 1/2) * n^n / exp(n+3). - Vaclav Kotesovec, Oct 26 2017
EXAMPLE
Some solutions for n=5
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
..4....4....4....4....4....4....4....4....4....4....4....4....4....4....4....4
..5....5....5....1....5....5....1....5....5....5....5....5....1....5....5....5
..2....1....2....5....1....1....5....1....1....1....2....2....5....1....2....2
..3....3....3....3....3....2....2....2....3....2....3....3....2....3....1....1
..4....4....1....4....4....3....4....4....2....3....1....4....3....2....3....3
..1....5....5....2....2....4....3....3....5....5....4....5....4....4....4....5
..5....2....4....5....5....5....5....5....4....4....5....1....5....5....5....4
CROSSREFS
Column k=4 of A293157.
Sequence in context: A125477 A016261 A016309 * A016259 A271029 A047795
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 21 2011
EXTENSIONS
a(0)=1 prepended and a(15)-a(21) added by Alois P. Heinz, Oct 17 2017
STATUS
approved