login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190823
Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.
6
1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
OFFSET
0,5
COMMENTS
From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} such that no block has its two vertices differing by less than 3. For example, the a(4) = 10 set partitions are:
{{1,4}, {2,6}, {3,7}, {5,8}}
{{1,4}, {2,7}, {3,6}, {5,8}}
{{1,5}, {2,6}, {3,7}, {4,8}}
{{1,5}, {2,6}, {3,8}, {4,7}}
{{1,5}, {2,7}, {3,6}, {4,8}}
{{1,5}, {2,8}, {3,6}, {4,7}}
{{1,6}, {2,5}, {3,7}, {4,8}}
{{1,6}, {2,5}, {3,8}, {4,7}}
{{1,7}, {2,5}, {3,6}, {4,8}}
{{1,8}, {2,5}, {3,6}, {4,7}}
(End)
LINKS
Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016.
FORMULA
a(n) = 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5) (proved). - Everett Sullivan, Mar 16 2017
a(n) ~ 2^(n+1/2) * n^n / exp(n+2), based on Sullivan's formula. - Vaclav Kotesovec, Mar 21 2017
EXAMPLE
All solutions for n=4 (read downwards):
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 1 4 4 1 4 4
1 1 2 1 4 2 1 4 2 2
3 3 1 2 2 3 2 3 1 3
2 4 4 4 3 4 3 2 3 1
4 2 3 3 4 1 4 4 4 4
MATHEMATICA
a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
dtui[{}]:={{}}; dtui[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@dtui[Complement[set, s]]]/@Table[{i, j}, {j, Select[set, #>i+2&]}];
Table[Length[dtui[Range[n]]], {n, 0, 12, 2}] (* Gus Wiseman, Feb 27 2019 *)
PROG
(Magma) I:=[1, 0, 0, 1, 10, 99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
(SageMath)
@CachedFunction
def a(n): # a = A190823
if (n<6): return (1, 0, 0, 1, 10, 99)[n]
else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
[a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023
CROSSREFS
Distance of 1 instead of 2 gives |A000806|.
Column k=3 of A293157.
Cf. A000699, A001147 (2-uniform set partitions), A003436, A005493, A011968, A170941, A278990 (distance 2+ version), A306386 (cyclical version).
Sequence in context: A213454 A000456 A138365 * A187019 A292429 A145644
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 21 2011
EXTENSIONS
a(16)-a(20) (using Everett Sullivan's formula) from Giovanni Resta, Mar 20 2017
a(0)=1 prepended by Alois P. Heinz, Oct 17 2017
STATUS
approved