The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011968 Apply (1+Shift) to Bell numbers. 12
 1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n. The maximum number of singletons is therefore 3. Alternatively, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 3 (or n+2 if n+2 < 3). For example, a(3)=7 counts the following set partitions of [5]: {1245, 3}, {12, 3, 45}, {124, 3, 5}, {15, 24, 3}, {125, 3, 4}, {14, 25, 3}, {12, 3, 4, 5}. - Olivier Gérard, Oct 29 2007 Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing a pair of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i) > 1. Then for n > 0, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008 REFERENCES Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011 LINKS Chai Wah Wu, Table of n, a(n) for n = 0..500 n = 0..200 from Vincenzo Librandi. Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy] Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308. Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29. FORMULA For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - Benoit Cloitre, Mar 09 2008 For n >= 1, a(n) = Bell(n) + Bell(n-1). - Augustine O. Munagi, Jul 17 2008 G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012 G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 20 2013 G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - Sergei N. Gladkovskii, Jan 20 2013 a(n) ~ Bell(n) * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021 EXAMPLE a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5. MAPLE with(combinat): seq(`if`(n>0, bell(n)+bell(n-1), 1), n=0..21); # Augustine O. Munagi, Jul 17 2008 PROG (Python) # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A011968_list, blist, b = [1, 2], [1], 1 for _ in range(10**2): ....blist = list(accumulate([b]+blist)) ....A011968_list.append(b+blist[-1]) ....b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014 CROSSREFS Cf. A000110, A000296, A011969, A011970. A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012 Cf. A000569, A240936, A321750. Sequence in context: A222867 A222776 A222890 * A080021 A306666 A032313 Adjacent sequences: A011965 A011966 A011967 * A011969 A011970 A011971 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 03:10 EST 2023. Contains 367531 sequences. (Running on oeis4.)