login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278990 Number of loopless linear chord diagrams with n chords. 26
1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
See the signed version of these numbers, A000806, for much more information about these numbers.
From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} containing no two successive vertices in the same block. For example, the a(3) = 5 set partitions are:
{{1,3},{2,5},{4,6}}
{{1,4},{2,5},{3,6}}
{{1,4},{2,6},{3,5}}
{{1,5},{2,4},{3,6}}
{{1,6},{2,4},{3,5}}
(End)
From Gus Wiseman, Jul 05 2020: (Start)
Also the number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal and where the first i appears before the first j for i < j. For example, the a(3) = 5 permutations are the following.
(1,2,3,1,2,3)
(1,2,3,1,3,2)
(1,2,3,2,1,3)
(1,2,3,2,3,1)
(1,2,1,3,2,3)
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..404 (terms 0..200 from Gheorghe Coserea)
H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
E. Krasko, I. Labutin, and A. Omelchenko, Enumeration of labelled and unlabelled Hamiltonian Cycles in complete k-partite graphs, arXiv:1709.03218 [math.CO], 2017, Table 1.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv:1601.05073 [math.CO], 2016.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
Donovan Young, Counting Bubbles in Linear Chord Diagrams, arXiv:2311.01569 [math.CO], 2023.
FORMULA
From Gheorghe Coserea, Dec 09 2016: (Start)
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + a(n-2), with a(0) = 1, a(1) = 0.
E.g.f. y satisfies: 0 = (1-2*x)*y'' - 3*y' - y.
a(n) - a(n-1) = A003436(n) for all n >= 2.
(End)
From Vaclav Kotesovec, Sep 15 2017: (Start)
a(n) = sqrt(2)*exp(-1)*(BesselK(1/2 + n, 1)/sqrt(Pi) - i*sqrt(Pi)*BesselI(1/2 + n, -1)), where i is the imaginary unit.
a(n) ~ 2^(n+1/2) * n^n / exp(n+1).
(End)
a(n) = A114938(n)/n! - Gus Wiseman, Jul 05 2020 (from Alexander Burstein's formula at A114938).
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*Sqrt(2/Pi) * BesselK(n + 1/2, -1).
G.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * Erfi((1+x)/sqrt(2*x)).
E.g.f.: exp(-1 + sqrt(1-2*x))/sqrt(1-2*x).
MATHEMATICA
RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n, 0, 20}] (* Vaclav Kotesovec, Sep 15 2017 *)
FullSimplify[Table[-I*(BesselI[1/2+n, -1] BesselK[3/2, 1] - BesselI[3/2, -1] BesselK[1/2+ n, 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
Table[(2 n-1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n, 1] +BesselK[1/2+n, 1]), {n, 0, 20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
twouniflin[{}]:={{}}; twouniflin[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@twouniflin[Complement[set, s]]]/@Table[{i, j}, {j, Select[set, #>i+1&]}];
Table[Length[twouniflin[Range[n]]], {n, 0, 14, 2}] (* Gus Wiseman, Feb 27 2019 *)
PROG
(PARI) seq(N) = {
my(a = vector(N)); a[1] = 0; a[2] = 1;
for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Dec 09 2016
(Magma) [n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
(SageMath)
def A278990_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A278990_list(30) # G. C. Greubel, Sep 26 2023
CROSSREFS
Column k=0 of A079267.
Column k=2 of A293157.
Row n=2 of A322013.
Cf. A000110, A000699 (topologically connected 2-uniform), A000806, A001147 (2-uniform), A003436 (cyclical version), A005493, A170941, A190823 (distance 3+ version), A322402, A324011, A324172.
Anti-run compositions are A003242.
Separable partitions are A325534.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
Sequence in context: A300987 A067305 A000806 * A127132 A141764 A075744
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2016
EXTENSIONS
a(0)=1 prepended by Gheorghe Coserea, Dec 09 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 21:53 EDT 2024. Contains 375233 sequences. (Running on oeis4.)