login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322402
Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.
5
1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
OFFSET
0,6
COMMENTS
If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019
LINKS
P. Flajolet and M. Noy, Analytic Combinatorics of Chord Diagrams, in: Formal power series and algebraic combinatorics (FPSAC '00) Moscow, 2000, p 191-201, eq (2)
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
FORMULA
The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.
EXAMPLE
From Gus Wiseman, Feb 27 2019: (Start)
Triangle begins:
1
0 1
0 1 2
0 4 6 5
0 27 36 28 14
0 248 310 225 120 42
0 2830 3396 2332 1210 495 132
0 38232 44604 29302 14560 6006 2002 429
0 593859 678696 430200 204540 81900 28392 8008 1430
Row n = 3 counts the following chord diagrams (see link for pictures):
{{1,3},{2,5},{4,6}} {{1,2},{3,5},{4,6}} {{1,2},{3,4},{5,6}}
{{1,4},{2,5},{3,6}} {{1,3},{2,4},{5,6}} {{1,2},{3,6},{4,5}}
{{1,4},{2,6},{3,5}} {{1,3},{2,6},{4,5}} {{1,4},{2,3},{5,6}}
{{1,5},{2,4},{3,6}} {{1,5},{2,3},{4,6}} {{1,6},{2,3},{4,5}}
{{1,5},{2,6},{3,4}} {{1,6},{2,5},{3,4}}
{{1,6},{2,4},{3,5}}
(End)
CROSSREFS
Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).
Sequence in context: A133144 A342384 A192134 * A196877 A098123 A066659
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Dec 06 2018
EXTENSIONS
Offset changed to 0 by Gus Wiseman, Feb 27 2019
STATUS
approved