OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.
LINKS
EXAMPLE
The sequence of all integer partitions with vertex-connectivity 1 begins: (2), (3), (4), (2,2), (5), (7), (8), (4,2), (9), (3,3), (2,2,2), (11), (13), (4,4), (16), (8,2), (17), (4,2,2), (19), (2,2,2,2), (23), (25), (27), (29), (9,3), (5,5), (3,3,3), (31), (32), (8,4), (4,4,2), (37), (16,2), (8,2,2), (41), (4,2,2,2), (43).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1, 0, Min@@Length/@Select[Subsets[Union@@primeMS/@y], Function[del, Length[csm[DeleteCases[DeleteCases[primeMS/@y, Alternatives@@del, {2}], {}]]]!=1]]];
Select[Range[100], vertConn[primeMS[#]]==1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 06 2018
STATUS
approved