The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013922 Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs). 57
0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336, 32093527159296128, 68846607723033232640, 290126947098532533378816, 2417684612523425600721132544, 40013522702538780900803893881856 (list; graph; refs; listen; history; text; internal format)



Or, number of labeled 2-connected graphs with n nodes.


Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p.402.

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 9.

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20(b), g(n).


Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..25 from R. W. Robinson)

Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.

Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]

Thomas Lange, Biconnected reliability, Hochschule Mittweida (FH), Fakultät Mathematik/Naturwissenschaften/Informatik, Master's Thesis, 2015.

Andrés Santos, Density Expansion of the Equation of State, in A Concise Course on the Theory of Classical Liquids, Volume 923 of the series Lecture Notes in Physics, pp 33-96, 2016. DOI:10.1007/978-3-319-29668-5_3. See Reference 40.

S. Selkow, The enumeration of labeled graphs by number of cutpoints, Discr. Math. 185 (1998), 183-191.


Harary and Palmer give e.g.f. in Eqn. (1.3.3) on page 10.


seq[n_] := CoefficientList[Log[x/InverseSeries[x*D[Log[Sum[2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^n], x]]], x]*Range[0, n-2]!;

seq[16] (* Jean-François Alcover, Aug 19 2019, after Andrew Howroyd *)


(PARI) seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))), -n)} \\ Andrew Howroyd, Sep 26 2018


Cf. A002218, A004115, A095983.

Row sums of triangle A123534.

Sequence in context: A096331 A159497 A177595 * A215835 A006423 A067423

Adjacent sequences:  A013919 A013920 A013921 * A013923 A013924 A013925




Stanley Selkow (sms(AT)owl.WPI.EDU)



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 03:31 EDT 2021. Contains 345125 sequences. (Running on oeis4.)