login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123534
Triangular array T(n,k) giving number of 2-connected graphs with n labeled nodes and k edges (n >= 3, n <= k <= n(n-1)/2).
6
1, 3, 6, 1, 12, 70, 100, 45, 10, 1, 60, 720, 2445, 3535, 2697, 1335, 455, 105, 15, 1, 360, 7560, 46830, 133581, 216951, 232820, 183540, 111765, 53627, 20307, 5985, 1330, 210, 21, 1, 2520, 84000, 835800, 3940440, 10908688, 20317528
OFFSET
3,2
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
LINKS
Andrew Howroyd, Rows 3 through 20, flattened (first 15 rows from R. W. Robinson)
EXAMPLE
Triangle begins (n >= 3, k >= n):
n
3 | 1;
4 | 3, 6, 1;
5 | 12, 70, 100, 45, 10, 1;
6 | 60, 720, 2445, 3535, 2697, 1335, 455, 105, 15, 1;
...
MATHEMATICA
row[n_] := row[n] = Module[{s}, s = (n-1)!*Log[x/InverseSeries[#, x]& @ (x*D[#, x]& @ Log[Sum[(1+y)^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1) ])]; CoefficientList[Coefficient[s, x, n-1]/y^n, y]];
Table[row[n], {n, 3, 15}] // Flatten (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
PROG
(PARI) row(n)={Vecrev((n-1)!*polcoef(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y)^binomial(k, 2) * x^k / k!) + O(x*x^n))))), n-1)/y^n)}
{ for(n=3, 7, print(row(n))) } \\ Andrew Howroyd, Nov 30 2018
CROSSREFS
Row sums give A013922.
Sequence in context: A120229 A266151 A192100 * A100960 A130852 A228335
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Nov 13 2006
STATUS
approved