login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062734
Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, 0 <= k <= n(n-1)/2).
18
1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 15, 6, 1, 0, 0, 0, 0, 125, 222, 205, 120, 45, 10, 1, 0, 0, 0, 0, 0, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 0, 0, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349
OFFSET
1,6
COMMENTS
T(n,n-1) = n^(n-2) counts free labeled trees A000272.
T(n,n) counts labeled connected unicyclic graphs A057500. - Geoffrey Critzer, Oct 07 2012
REFERENCES
Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - N. J. A. Sloane, Apr 06 2012
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.5.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..9919 (terms 1..75 from Alex Ermolaev, terms 76..175 from Alois P. Heinz)
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; Table 58.
FORMULA
G.f.: Sum_{n>=1, k>=0} T(n, k) * x^n/n! * y^k = log(Sum_{n>=0} (1 + y)^binomial(n, 2) * x^n/n!). - Ralf Stephan, Jan 18 2005
EXAMPLE
Triangle starts:
[1],
[0, 1],
[0, 0, 3, 1],
[0, 0, 0, 16, 15, 6, 1],
[0, 0, 0, 0, 125, 222, 205, 120, 45, 10, 1],
...
MATHEMATICA
nn=6; s=Sum[(1+y)^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]!CoefficientList[Series[Log[ s]+1, {x, 0, nn}], {x, y}]//Grid (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
T[ n_, k_] := If[ n < 0, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, k]]; (* Michael Somos, Aug 12 2017 *)
PROG
(PARI) {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( log( sum(m=0, n, (1 + y)^(m * (m-1)/2) * x^m/m!)), n), k))}; /* Michael Somos, Aug 12 2017 */
CROSSREFS
Cf. A001187 (row sums), A054924 (unlabeled case), A061540 (a subdiagonal).
See A123527 for another version (without leading zeros in each row).
Sequence in context: A373417 A144209 A094544 * A336567 A361902 A205531
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Jul 12 2001
STATUS
approved