This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094544 Triangle of a(n,m) = number of m-member minimal T_0-covers of an n-set (n >= 0, 0<= m <=n). 3
 1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 1, 0, 0, 0, 120, 55, 1, 0, 0, 0, 480, 1650, 156, 1, 0, 0, 0, 840, 34650, 13650, 399, 1, 0, 0, 0, 0, 554400, 873600, 89376, 960, 1, 0, 0, 0, 0, 6985440, 45208800, 14747040, 514080, 2223, 1, 0, 0, 0, 0, 69854400, 1989187200 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point. REFERENCES G. Kilibarda and V. Jovovic, "Enumeration of some classes of T_0-hypergraphs", in preparation, 2004. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Eric Weisstein's World of Mathematics, Minimal Cover. FORMULA a(n, m) = n!/m!*binomial(2^m-m-1, n-m). E.g.f.: Sum_{n>=0} y^n*(1+y)^(2^n-n-1)*x^n/n!. EXAMPLE 1; 0, 1; 0, 0, 1; 0, 0, 3,   1; 0, 0, 0,  16,    1; 0, 0, 0, 120,   55,   1; 0, 0, 0, 480, 1650, 156, 1; ... MATHEMATICA Flatten[Table[n!/m! Binomial[2^m-m-1, n-m], {n, 0, 10}, {m, 0, n}]] (* Harvey P. Dale, Jan 16 2012 *) CROSSREFS Cf. A035348, A046165, A094545(row sums), A094546(column sums). Sequence in context: A185664 A300812 A144209 * A062734 A205531 A269246 Adjacent sequences:  A094541 A094542 A094543 * A094545 A094546 A094547 KEYWORD easy,nonn,tabl AUTHOR Goran Kilibarda, Vladeta Jovovic, May 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 21:57 EDT 2019. Contains 328134 sequences. (Running on oeis4.)