OFFSET
1,1
COMMENTS
a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 1000 terms from Harry J. Smith]
FORMULA
a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[1, n]], {n, 2, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 20 2008 *)
DivisorSigma[1, 2*Range[60]] (* Harvey P. Dale, Jun 08 2022 *)
PROG
(PARI) vector(66, n, sigma(2*n, 1))
(PARI) for (n=1, 1000, write("b062731.txt", n, " ", sigma(2*n)) ) \\ Harry J. Smith, Aug 09 2009
(MuPAD) numlib::sigma(2*n)$ n=0..81 // Zerinvary Lajos, May 13 2008
(Magma) [SumOfDivisors(2*n): n in [1..70]]; // Vincenzo Librandi, Oct 31 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 11 2001
EXTENSIONS
Zero removed and offset corrected by Omar E. Pol, Jul 17 2009
STATUS
approved