login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193553
Sum of divisors of 4*n.
22
7, 15, 28, 31, 42, 60, 56, 63, 91, 90, 84, 124, 98, 120, 168, 127, 126, 195, 140, 186, 224, 180, 168, 252, 217, 210, 280, 248, 210, 360, 224, 255, 336, 270, 336, 403, 266, 300, 392, 378, 294, 480, 308, 372, 546, 360, 336, 508, 399, 465, 504, 434, 378, 600, 504, 504, 560, 450, 420, 744, 434, 480, 728, 511, 588, 720
OFFSET
1,1
LINKS
FORMULA
a(n) = sigma(4*n) = A000203(4*n).
a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
G.f. is x times the logarithmic derivative of the g.f. of A182820.
a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - Miles Wilson, Sep 29 2024
MATHEMATICA
DivisorSigma[1, 4*Range[70]] (* Harvey P. Dale, Jan 27 2015 *)
PROG
(PARI) vector(66, n, sigma(4*n, 1))
CROSSREFS
Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), this sequence (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Sequence in context: A292379 A146624 A239934 * A274090 A195041 A229462
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 30 2011
STATUS
approved