OFFSET
1,1
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = sigma(4*n) = A000203(4*n).
a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
G.f. is x times the logarithmic derivative of the g.f. of A182820.
a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - Miles Wilson, Sep 29 2024
MATHEMATICA
DivisorSigma[1, 4*Range[70]] (* Harvey P. Dale, Jan 27 2015 *)
PROG
(PARI) vector(66, n, sigma(4*n, 1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 30 2011
STATUS
approved