login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182820 G.f.: exp( Sum_{n>=1} sigma(4n)*x^n/n ). 13
1, 7, 32, 119, 385, 1127, 3057, 7799, 18914, 43950, 98434, 213486, 450051, 925013, 1858355, 3657052, 7062245, 13404195, 25038741, 46086250, 83669927, 149970936, 265608168, 465149039, 806022315, 1382822644, 2350101516, 3958427938 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

sigma(4n) = A000203(4n), the sum of divisors of 4n.

Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

Generating function A(x) = E(x^2)^3/E(x)^7 where E(x) = Product_{n>=1} (1-x^n). [Joerg Arndt, Dec 05 2010]

a(n) ~ 11^(5/4) * exp(sqrt(11*n/3)*Pi) / (128 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Nov 28 2016

From Peter Bala, Jan 24 2016: (Start)

A(x^4) = P(x)*P(-x)*P(i*x)*P(-i*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n).

a(n) = Sum_{k = 0..4*n} i^k*b(k)*b(4*n-k), where b(n) := Sum_{k = 0..n} (-1)^k*p(k)*p(n-k). (End)

EXAMPLE

G.f.: A(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 +...

log(A(x)) = 7*x + 15*x^2/2 + 28*x^3/3 + 31*x^4/4 + 42*x^5/5 + 60*x^6/6 + 56*x^7/7 + 63*x^8/8 +...+ sigma(4n)*x^n/n +...

MAPLE

with(combinat):

b := n -> add((-1)^k*numbpart(k)*numbpart(n-k), k = 0..n):

seq( add(I^k*b(k)*b(4*n-k), k = 0..4*n), n = 0..30 );

# - Peter Bala, Jan 24 2017

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1 + x^k)^3/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sigma(4*m)*x^m/m)+x*O(x^n)), n)}

(PARI) x='x+O('x^66); Vec(eta(x^2)^3/eta(x)^7) \\ Joerg Arndt, Dec 05 2010

CROSSREFS

Cf. A000203, A000041; variants: A182818, A182819, A182821.

Sequence in context: A254407 A219510 A164270 * A001794 A140289 A133107

Adjacent sequences:  A182817 A182818 A182819 * A182821 A182822 A182823

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Dec 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 09:52 EDT 2021. Contains 347597 sequences. (Running on oeis4.)