This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001794 Negated coefficients of Chebyshev T polynomials: [x^n](-T(n+6, x)), n >= 0. (Formerly M4405 N1859) 16
 1, 7, 32, 120, 400, 1232, 3584, 9984, 26880, 70400, 180224, 452608, 1118208, 2723840, 6553600, 15597568, 36765696, 85917696, 199229440, 458752000, 1049624576, 2387607552, 5402263552, 12163481600, 27262976000, 60850962432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A negated subdiagonal of A053120. If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then a(n-2) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007 The third corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795. Jones, C. W.; Miller, J. C. P.; Conn, J. F. C.; Pankhurst, R. C.; Tables of Chebyshev polynomials. Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..500 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. M. H. Albert, M. D. Atkinson, R. Brignall, The enumeration of three pattern classes using monotone grid classes, E. J. Combinat. 19 (3) (2012) P20, chapter 5.4.1. T. Hibi, N. Li, H. Ohsugi, The face vector of a half-open hypersimplex, arXiv preprint arXiv:1309.5155 [math.CO], 2013-2014. Milan Janjic, Two Enumerative Functions Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16). FORMULA a(n) = 2^(n-2)*(n+1)*(n+2)*(n+6)/3. G.f.: (1-x)/(1-2*x)^4. - Simon Plouffe in his 1992 dissertation a(n) = Sum_{k=0..floor((n+6)/2)} C(n+6, 2*k)*C(k, 3). - Paul Barry, May 15 2003 With a leading zero, the binomial transform of A000330. - Paul Barry, Jul 19 2003 a(n) = Sum_{i=0..n+1} (Sum{k=0..i} (k^2*binomial(n+1, i))). - Jon Perry, Feb 26 2004 [corrected by Michel Marcus, Mar 25 2017] Binomial transform of a(n) = (2*n^3 + 6*n^2 + 7*n + 3)/3 offset 0. a(3)=120. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009 a(n) = (2^(n-1)/3)*binomial(n+2,2)*(n+6). - Brad Clardy, Mar 08 2012 MAPLE [seq(coeftayl((1-x)/(1-2*x)^4, x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018 MATHEMATICA a[n_] := 2^(n-2)*(n+1)*(n+2)*(n+6)/3; a /@ Range[0, 20] (* Giovanni Resta, Mar 25 2017 *) PROG (MAGMA) [2^(n-1)/3*Binomial(n+2, 2)*(n+6) : n in [0..25]]; // Brad Clardy, Mar 08 2012 (PARI) a(n) = sum(i=0, n+1, sum(k=0, i, k^2*binomial(n+1, i))); \\ Michel Marcus, Mar 25 2017 (PARI) a(n) = - polcoeff(polchebyshev(n+6), n); \\ Michel Marcus, Mar 20 2018 (GAP) List([0..25], n->2^(n-2)*(n+1)*(n+2)*(n+6)/3); # Muniru A Asiru, Mar 20 2018 CROSSREFS Cf. A039991 (negative of column 6), A028297, A008310. With alternating signs, the o.g.f. (with offset 1) is the inverse of the o.g.f. of A065097. Cf. A001789 (partial sums), A081279 (binomial transform), A005900 (0 followed by inverse binomial transform). Sequence in context: A219510 A164270 A182820 * A140289 A133107 A178851 Adjacent sequences:  A001791 A001792 A001793 * A001795 A001796 A001797 KEYWORD nonn,easy,changed AUTHOR EXTENSIONS Name clarified by Wolfdieter Lang, Nov 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)