The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039991 Triangle of coefficients of cos(x)^n in polynomial for cos(nx). 18
 1, 1, 0, 2, 0, -1, 4, 0, -3, 0, 8, 0, -8, 0, 1, 16, 0, -20, 0, 5, 0, 32, 0, -48, 0, 18, 0, -1, 64, 0, -112, 0, 56, 0, -7, 0, 128, 0, -256, 0, 160, 0, -32, 0, 1, 256, 0, -576, 0, 432, 0, -120, 0, 9, 0, 512, 0, -1280, 0, 1120, 0, -400, 0, 50, 0, -1, 1024, 0, -2816, 0, 2816, 0, -1232, 0, 220 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also triangle of coefficients of Chebyshev polynomials of first kind (T(n,x)) in decreasing order of powers of x. A053120 gives the coefficients in increasing order. The polynomials R(n,x) := sum(a(n,m)*sqrt(x)^m, m=0..n) have g.f. (1-z)/(1 - 2*z + x*z^2) = ((1-z)/(1-2*z))/(1 - x*(-z^2/(1-2*z))) (from the row reversion of the g.f. of A053120 and x^2 -> x). Therefore this triangle becomes the Riordan triangle ((1-z)/(1-2*z), -z^2/(1-2*z)) if the vanishing columns are deleted (see A028297) and zeros are appended in each row numbered n>=1 in order to obtain a triangle. This is then A201701 with negative odd numbered columns. - Wolfdieter Lang, Aug 06 2014 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795. Martin Aigner and Gunter M. Ziegler, Proofs From the Book, Springer 2004. See Chapter 18, Appendix. E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593. Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. LINKS T. D. Noe, Table of n, a(n) for n = 0..5150 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, see page 172. Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 94. FORMULA a(n, m) = 0 if n= 2, m >= 0; a(n, -2) := 0=: a(n, -1), a(0, 0)=1=a(1, 0). G.f. for m-th column: 0 if m odd, (1-x)/(1-2*x) if m=0, else ((-1)^(m/2))*(x^m)*(1-x)/(1-2*x)^(m/2+1). For g.f. for row polynomials and row sums, see A053120. G.f. row polynomials: (1-z)/(1 - 2*z + (x*z)^2. - Wolfdieter Lang, Aug 06 2014 Recurrence for the row polynomials Trev(n, x):= x^n*T(n, 1/x) = sum(a(n,m)*x^m, m=0..n): Trev(n, x) = 2*Trev(n-1, x) - x^2*Trev(n-2, x), n >= 1, Trev(-1, x) = 1/x^2 and Trev(0, x) = 1. From the T(n, x) recurrence. Compare this with A081265. - Wolfdieter Lang, Aug 07 2014 EXAMPLE Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc. From Wolfdieter Lang, Aug 06 2014: (Start) The triangle a(n,m) begins: n\m     0 1      2 3     4 5      6 7     8  9    10 11  12 13  14 15 ... 0:      1 1:      1 0 2:      2 0     -1 3:      4 0     -3 0 4:      8 0     -8 0     1 5:     16 0    -20 0     5 0 6:     32 0    -48 0    18 0     -1 7:     64 0   -112 0    56 0     -7 0 8:    128 0   -256 0   160 0    -32 0     1 9:    256 0   -576 0   432 0   -120 0     9  0 10:   512 0  -1280 0  1120 0   -400 0    50  0    -1 11:  1024 0  -2816 0  2816 0  -1232 0   220  0   -11  0 12:  2048 0  -6144 0  6912 0  -3584 0   840  0   -72  0   1 13:  4096 0 -13312 0 16640 0  -9984 0  2912  0  -364  0  13  0 14:  8192 0 -28672 0 39424 0 -26880 0  9408  0 -1568  0  98  0  -1 15: 16384 0 -61440 0 92160 0 -70400 0 28800  0 -6048  0 560  0 -15  0 ... -------------------------------------------------------------------------- Chebyshev T-polynomials (decreasing even or odd powers): n=3: T(3, n) = 4*x^3  - 3*x^1; n=4: T(4, x) = 8*x^4 - 8*x^2 + 1. (End) MAPLE seq(seq(coeff(orthopoly[T](i, x), x, i-j), j=0..i), i=0..20); # Robert Israel, Aug 07 2014 MATHEMATICA row[n_] := CoefficientList[ ChebyshevT[n, x], x] // Reverse; Table[row[n], {n, 0, 11}] // Flatten(* Jean-François Alcover, Sep 14 2012 *) CROSSREFS Cf. A028297 (without vanishing columns). A008310 (zero columns deleted then rows reversed). Triangle without zeros: A028297. Without signs: A081265. Cf. A053120 (increasing powers of x). Sequence in context: A261251 A341101 A342909 * A081265 A273821 A108643 Adjacent sequences:  A039988 A039989 A039990 * A039992 A039993 A039994 KEYWORD tabl,easy,sign,nice AUTHOR EXTENSIONS Entry improved by comments from Wolfdieter Lang, Jan 11 2000. Edited: A053120 added in comment and crossrefs. Cfs. A028297 and A008310 specified. - Wolfdieter Lang, Aug 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 19:18 EDT 2021. Contains 342853 sequences. (Running on oeis4.)