login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039991 Triangle of coefficients of cos(x)^n in polynomial for cos(nx). 18

%I

%S 1,1,0,2,0,-1,4,0,-3,0,8,0,-8,0,1,16,0,-20,0,5,0,32,0,-48,0,18,0,-1,

%T 64,0,-112,0,56,0,-7,0,128,0,-256,0,160,0,-32,0,1,256,0,-576,0,432,0,

%U -120,0,9,0,512,0,-1280,0,1120,0,-400,0,50,0,-1,1024,0,-2816,0,2816,0,-1232,0,220

%N Triangle of coefficients of cos(x)^n in polynomial for cos(nx).

%C Also triangle of coefficients of Chebyshev polynomials of first kind (T(n,x)) in decreasing order of powers of x. A053120 gives the coefficients in increasing order.

%C The polynomials R(n,x) := sum(a(n,m)*sqrt(x)^m, m=0..n) have g.f. (1-z)/(1 - 2*z + x*z^2) = ((1-z)/(1-2*z))/(1 - x*(-z^2/(1-2*z))) (from the row reversion of the g.f. of A053120 and x^2 -> x). Therefore this triangle becomes the Riordan triangle ((1-z)/(1-2*z), -z^2/(1-2*z)) if the vanishing columns are deleted (see A028297) and zeros are appended in each row numbered n>=1 in order to obtain a triangle. This is then A201701 with negative odd numbered columns. - _Wolfdieter Lang_, Aug 06 2014

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

%D Martin Aigner and Gunter M. Ziegler, Proofs From the Book, Springer 2004. See Chapter 18, Appendix.

%D E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.

%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

%H T. D. Noe, <a href="/A039991/b039991.txt">Table of n, a(n) for n = 0..5150</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F a(n, m) = 0 if n<m or m odd, (-1)^{m/2} if m=n is even, ((-1)^(3*m/2))*(2^(n-m-1))*n*binomial(n-1-m/2, n-1-m)/(n-m) else. a(n, m) = 2*a(n-1, m)-a(n-2, m-2), n >= 2, m >= 0; a(n, -2) := 0=: a(n, -1), a(0, 0)=1=a(1, 0).

%F G.f. for m-th column: 0 if m odd, (1-x)/(1-2*x) if m=0, else ((-1)^(m/2))*(x^m)*(1-x)/(1-2*x)^(m/2+1). For g.f. for row polynomials and row sums, see A053120.

%F G.f. row polynomials: (1-z)/(1 - 2*z + (x*z)^2. - _Wolfdieter Lang_, Aug 06 2014

%F Recurrence for the row polynomials Trev(n, x):= x^n*T(n, 1/x) = sum(a(n,m)*x^m, m=0..n): Trev(n, x) = 2*Trev(n-1, x) - x^2*Trev(n-2, x), n >= 1, Trev(-1, x) = 1/x^2 and Trev(0, x) = 1. From the T(n, x) recurrence. Compare this with A081265. - _Wolfdieter Lang_, Aug 07 2014

%e Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.

%e From _Wolfdieter Lang_, Aug 06 2014: (Start)

%e The triangle a(n,m) begins:

%e n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

%e 0: 1

%e 1: 1 0

%e 2: 2 0 -1

%e 3: 4 0 -3 0

%e 4: 8 0 -8 0 1

%e 5: 16 0 -20 0 5 0

%e 6: 32 0 -48 0 18 0 -1

%e 7: 64 0 -112 0 56 0 -7 0

%e 8: 128 0 -256 0 160 0 -32 0 1

%e 9: 256 0 -576 0 432 0 -120 0 9 0

%e 10: 512 0 -1280 0 1120 0 -400 0 50 0 -1

%e 11: 1024 0 -2816 0 2816 0 -1232 0 220 0 -11 0

%e 12: 2048 0 -6144 0 6912 0 -3584 0 840 0 -72 0 1

%e 13: 4096 0 -13312 0 16640 0 -9984 0 2912 0 -364 0 13 0

%e 14: 8192 0 -28672 0 39424 0 -26880 0 9408 0 -1568 0 98 0 -1

%e 15: 16384 0 -61440 0 92160 0 -70400 0 28800 0 -6048 0 560 0 -15 0

%e ...

%e --------------------------------------------------------------------------

%e Chebyshev T-polynomials (decreasing even or odd powers):

%e n=3: T(3, n) = 4*x^3 - 3*x^1; n=4: T(4, x) = 8*x^4 - 8*x^2 + 1. (End)

%p seq(seq(coeff(orthopoly[T](i,x),x,i-j),j=0..i),i=0..20); # _Robert Israel_, Aug 07 2014

%t row[n_] := CoefficientList[ ChebyshevT[n, x], x] // Reverse; Table[row[n], {n, 0, 11}] // Flatten(* _Jean-Fran├žois Alcover_, Sep 14 2012 *)

%Y Cf. A028297 (without vanishing columns). A008310 (zero columns deleted then rows reversed).

%Y Triangle without zeros: A028297. Without signs: A081265.

%Y Cf. A053120 (increasing powers of x).

%K tabl,easy,sign,nice

%O 0,4

%A _David W. Wilson_

%E Entry improved by comments from _Wolfdieter Lang_, Jan 11 2000.

%E Edited: A053120 added in comment and crossrefs. Cfs. A028297 and A008310 specified. - _Wolfdieter Lang_, Aug 06 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:42 EST 2019. Contains 329768 sequences. (Running on oeis4.)