OFFSET
0,3
COMMENTS
Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy] p. 795.
Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120--135. MR3149030.
Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, see page 172.
Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 94.
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=2, p. 22, arXiv:1706.08381 [math.GM], 2017.
FORMULA
Cos(n*x) = 2*cos((n-1)*x)*cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x)/(1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
EXAMPLE
Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From Wolfdieter Lang, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 ....
0: 1
1: 1
2: 2 -1
3: 4 -3
4: 8 -8 1
5: 16 -20 5
6: 32 -48 18 -1
7: 64 -112 56 -7
8: 128 -256 160 -32 1
9: 256 -576 432 -120 9
10: 512 -1280 1120 -400 50 -1
11: 1024 -2816 2816 -1232 220 -11
12: 2048 -6144 6912 -3584 840 -72 1
13: 4096 -13312 16640 -9984 2912 -364 13
14: 8192 -28672 39424 -26880 9408 -1568 98 -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From Philippe Deléham, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
1;
1, 0;
2, -1, 0;
4, -3, 0, 0;
8, -8, 1, 0, 0;
16, -20, 5, 0, 0, 0;
32, -48, 18, -1, 0, 0, 0; (End)
MAPLE
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r, 0]]; Partition[r, 2][[All, 1]], {n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
KEYWORD
tabf,easy,sign
AUTHOR
EXTENSIONS
More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014
STATUS
approved