OFFSET
1,2
COMMENTS
Rows have ceiling(n/2) terms.
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
FORMULA
T(n,k) = (-1)^k*((n-2*k)*(-1)^n-n-2*k)/(2*n+(-1)^n-1+4*k)*2^(2*k+((-1)^n-1)/2)*binomial((2*n+(-1)^n-1)/4+k,(2*n-(-1)^n+1)/4-k). - Tani Akinari, Jul 15 2024
EXAMPLE
Triangle begins:
1;
2;
3, -4;
4, -8;
5, -20, 16;
6, -32, 32;
7, -56, 112, -64;
8, -80, 192, -128;
9, -120, 432, -576, 256;
10, -160, 672, -1024, 512;
...
sin 3x = 3 sin x - 4 sin^3 x;
sin 4x / cos x = 4 sin x - 8 sin^3 x, etc.
MATHEMATICA
t[n_] := (Sin[n x]/If[EvenQ[n], Cos[x], 1] // TrigExpand) /. Cos[x]^m_ /; EvenQ[m] -> (1 - Sin[x]^2)^(m/2) // Expand; Flatten[Table[ Partition[ CoefficientList[t[n], Sin[x]] , 2][[All, 2]], {n, 1, 15}]][[1 ;; 59]] (* Jean-François Alcover, May 06 2011 *)
PROG
(Maxima) T(n, k):=(-1)^k*((n-2*k)*(-1)^n-n-2*k)/(2*n+(-1)^n-1+4*k)*2^(2*k+((-1)^n-1)/2)*binomial((2*n+(-1)^n-1)/4+k, (2*n-(-1)^n+1)/4-k); /* Tani Akinari, Jul 15 2024 */
CROSSREFS
KEYWORD
sign,tabf,nice,easy
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 08 2000
STATUS
approved