login
A360683
Number of integer partitions of n whose second differences sum to 0, meaning either there is only one part, or the first two parts have the same difference as the last two parts.
1
1, 1, 2, 3, 4, 4, 8, 6, 11, 12, 17, 14, 32, 23, 40, 44, 64, 59, 104, 93, 149, 157, 218, 227, 342, 349, 481, 538, 713, 777, 1052, 1145, 1494, 1692, 2130, 2416, 3064, 3449, 4286, 4918, 6028, 6882, 8424, 9620, 11634, 13396, 16022, 18416, 22019, 25248, 29954
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (22111) (71)
(321) (1111111) (2222)
(2211) (3221)
(111111) (3311)
(22211)
(221111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Total[Differences[#, 2]]==0&]], {n, 0, 30}]
CROSSREFS
For mean instead of sum we have a(n) - A008619(n).
For median instead of sum we have A360682.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A067538 counts partitions with integer mean, strict A102627.
A316413 ranks partitions with integer mean, complement A348551.
Sequence in context: A028298 A047966 A360243 * A317085 A236543 A360245
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2023
STATUS
approved