login
A360685
Number of maximum independent vertex sets in the n-halved cube graph Q_n/2.
2
1, 2, 4, 4, 40, 120, 240, 240, 11612160
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Halved Cube Graph.
Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set.
MATHEMATICA
Table[With[{g = GraphPower[HypercubeGraph[n - 1], 2]}, Length[FindIndependentVertexSet[g, Length /@ FindIndependentVertexSet[g], All]]], {n, 8}]
PROG
(Python)
from collections import Counter
from networkx import empty_graph, find_cliques, complement, power
def A360685(n):
k = 1<<n-1
G = empty_graph(range(k))
G.add_edges_from((a, b) for a in range(k) for b in range(a) if (lambda m: not(m&-m)^m if m else False)(a^b))
return (c:=Counter(len(c) for c in find_cliques(complement(power(G, 2)))))[max(c)] # Chai Wah Wu, Jan 12 2024
CROSSREFS
Cf. A290606.
Sequence in context: A137787 A225171 A320600 * A290606 A155952 A277445
KEYWORD
nonn,more,hard
AUTHOR
Eric W. Weisstein, Feb 16 2023
STATUS
approved