login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137787
a(n) = 5^n - 4^n - 3^n - 2^n.
0
-2, -4, -4, 26, 272, 1826, 10736, 59426, 318272, 1670786, 8656976, 44454626, 226827872, 1151991746, 5830280816, 29429454626, 148249811072, 745630312706, 3745590106256, 18797445635426, 94264432179872, 472428649241666, 2366562219717296, 11850466059333026, 59322887352366272
OFFSET
0,1
FORMULA
G.f.: 2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Oct 27 2014
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(2*x)*(exp(3*x) - exp(2*x) - exp(x) - 1).
a(n) = 14*a(n-1) - 71*a(n-2) + 154*a(n-3) - 120*a(n-4) for n > 3. (End)
MATHEMATICA
Array[5^#-4^#-3^#-2^#&, 30, 0]
LinearRecurrence[{14, -71, 154, -120}, {-2, -4, -4, 26}, 30] (* Harvey P. Dale, Mar 25 2024 *)
PROG
(PARI) Vec(2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014
CROSSREFS
Sequence in context: A068554 A371373 A092524 * A225171 A320600 A360685
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms, corrected offset and Mathematica program, Harvey P. Dale, Apr 27 2013
a(24) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved