%I #21 Sep 12 2024 20:35:10
%S -2,-4,-4,26,272,1826,10736,59426,318272,1670786,8656976,44454626,
%T 226827872,1151991746,5830280816,29429454626,148249811072,
%U 745630312706,3745590106256,18797445635426,94264432179872,472428649241666,2366562219717296,11850466059333026,59322887352366272
%N a(n) = 5^n - 4^n - 3^n - 2^n.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (14,-71,154,-120).
%F G.f.: 2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - _Colin Barker_, Oct 27 2014
%F From _Elmo R. Oliveira_, Sep 12 2024: (Start)
%F E.g.f.: exp(2*x)*(exp(3*x) - exp(2*x) - exp(x) - 1).
%F a(n) = 14*a(n-1) - 71*a(n-2) + 154*a(n-3) - 120*a(n-4) for n > 3. (End)
%t Array[5^#-4^#-3^#-2^#&,30,0]
%t LinearRecurrence[{14,-71,154,-120},{-2,-4,-4,26},30] (* _Harvey P. Dale_, Mar 25 2024 *)
%o (PARI) Vec(2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ _Colin Barker_, Oct 27 2014
%K sign,easy
%O 0,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 28 2008
%E More terms, corrected offset and Mathematica program, _Harvey P. Dale_, Apr 27 2013
%E a(24) from _Elmo R. Oliveira_, Sep 12 2024