login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137788
a(n) = 6^n - 5^n - 4^n - 3^n - 2^n.
1
-8, -18, -8, 318, 3352, 26142, 183112, 1216638, 7842232, 49591902, 309595432, 1915328958, 11771279512, 71987413662, 438579282952, 2664183937278, 16146410851192, 97676152243422, 590010212989672, 3559688008961598, 21455704973213272, 129219894479953182, 777738831202779592
OFFSET
1,1
FORMULA
From R. J. Mathar, Jun 15 2009: (Start)
G.f.: 2*x*(4 - 71*x + 444*x^2 - 1164*x^3 + 1080*x^4)/((6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)).
a(n) = 20*a(n-1) - 155*a(n-2) + 580*a(n-3) - 1044*a(n-4) + 720*a(n-5). (End)
EXAMPLE
- 8*x - 18*x^2 - 8*x^3 + 318*x^4 + 3352*x^5 + 26142*x^6 + 183112*x^7 + ...
MAPLE
a:=proc (n) options operator, arrow: 6^n-5^n-4^n-3^n-2^n end proc: seq(a(n), n =1..20); # Emeric Deutsch, May 25 2008
MATHEMATICA
Array[6^#-5^#-4^#-3^#-2^# &, 10]
LinearRecurrence[{20, -155, 580, -1044, 720}, {-8, -18, -8, 318, 3352}, 30] (* Harvey P. Dale, Jan 23 2012 *)
PROG
(PARI) {a(n) = 6^n - 5^n - 4^n - 3^n - 2^n} /* Michael Somos, Jan 06 2012 */
CROSSREFS
Sequence in context: A107779 A018874 A163900 * A378228 A333828 A133202
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from Alexander R. Povolotsky and Emeric Deutsch, May 01 2008
STATUS
approved