login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137785
Triangular sequence of coefficients of the expansion of p(x,t) = exp(x*t)*(1 + t^2)^2/(t*(1 - t^2)).
0
0, 1, 6, 0, 1, 0, 18, 0, 1, 96, 0, 36, 0, 1, 0, 480, 0, 60, 0, 1, 2880, 0, 1440, 0, 90, 0, 1, 0, 20160, 0, 3360, 0, 126, 0, 1, 161280, 0, 80640, 0, 6720, 0, 168, 0, 1, 0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1, 14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1
OFFSET
1,3
REFERENCES
The Beauty of Fractals, Springer-Verlag, New York, 1986, editors Peitgen and Richter, pages 153
Terrell Hill, Statistical Mechanics, Dover, 1987, page 329 ff
EXAMPLE
{0, 1},
{6, 0, 1},
{0, 18, 0, 1},
{96, 0, 36, 0, 1},
{0, 480, 0, 60, 0, 1},
{2880, 0, 1440, 0, 90, 0, 1},
{0, 20160, 0, 3360, 0, 126, 0, 1},
{161280, 0, 80640, 0, 6720, 0, 168, 0, 1},
{0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1},
{14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1},
{0, 159667200, 0, 26611200, 0, 1330560, 0, 31680, 0, 330, 0, 1}
MATHEMATICA
p[t_] = Exp[x*t]*(1 + t^2)^2/(t*(1 - t^2));
Table[ ExpandAll[(n + 1)!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], { n, 0, 10}];
a = Table[(n + 1)!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Cf. A136264.
Sequence in context: A357003 A264808 A200229 * A199568 A134899 A076413
KEYWORD
nonn,tabf,uned
AUTHOR
Roger L. Bagula, Apr 28 2008
STATUS
approved