login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136264
Expansion of g.f. (1+x)^2*(x^2-6*x+1)/(x-1)^4.
3
1, 0, -16, -64, -160, -320, -560, -896, -1344, -1920, -2640, -3520, -4576, -5824, -7280, -8960, -10880, -13056, -15504, -18240, -21280, -24640, -28336, -32384, -36800, -41600, -46800, -52416, -58464, -64960, -71920, -79360, -87296, -95744, -104720, -114240, -124320, -134976, -146224, -158080
OFFSET
0,3
COMMENTS
This g.f. is the eighth power of the spontaneous magnetization series for the two-dimensional square lattice in the parameter x = exp(-4J/kT), cf. A002928.
REFERENCES
Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 331. See eq. 44.12 for the g.f. with x replaced by x^2.
LINKS
FORMULA
a(n) = 8*n*(1 - n^2)/3, n>0. - R. J. Mathar, Mar 09 2009
E.g.f.: 1 - 8*exp(x)*x^2*(3 + x)/3. - Stefano Spezia, Oct 11 2023
MATHEMATICA
CoefficientList[Series[(1+x)^2(x^2-6x+1)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 0, -16, -64, -160}, 40] (* Harvey P. Dale, Mar 15 2020 *)
PROG
(PARI) Vec((1+x)^2*(x^2-6*x+1)/(x-1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015
CROSSREFS
Essentially the same as A102860. Cf. A115046, A002928.
Sequence in context: A309573 A205064 A102860 * A266103 A100184 A304845
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Apr 07 2008
STATUS
approved