OFFSET
0,3
COMMENTS
This g.f. is the eighth power of the spontaneous magnetization series for the two-dimensional square lattice in the parameter x = exp(-4J/kT), cf. A002928.
REFERENCES
Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 331. See eq. 44.12 for the g.f. with x replaced by x^2.
LINKS
M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 8*n*(1 - n^2)/3, n>0. - R. J. Mathar, Mar 09 2009
E.g.f.: 1 - 8*exp(x)*x^2*(3 + x)/3. - Stefano Spezia, Oct 11 2023
MATHEMATICA
CoefficientList[Series[(1+x)^2(x^2-6x+1)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 0, -16, -64, -160}, 40] (* Harvey P. Dale, Mar 15 2020 *)
PROG
(PARI) Vec((1+x)^2*(x^2-6*x+1)/(x-1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Apr 07 2008
STATUS
approved