login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. (1+x)^2*(x^2-6*x+1)/(x-1)^4.
3

%I #41 Dec 20 2023 15:57:29

%S 1,0,-16,-64,-160,-320,-560,-896,-1344,-1920,-2640,-3520,-4576,-5824,

%T -7280,-8960,-10880,-13056,-15504,-18240,-21280,-24640,-28336,-32384,

%U -36800,-41600,-46800,-52416,-58464,-64960,-71920,-79360,-87296,-95744,-104720,-114240,-124320,-134976,-146224,-158080

%N Expansion of g.f. (1+x)^2*(x^2-6*x+1)/(x-1)^4.

%C This g.f. is the eighth power of the spontaneous magnetization series for the two-dimensional square lattice in the parameter x = exp(-4J/kT), cf. A002928.

%D Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 331. See eq. 44.12 for the g.f. with x replaced by x^2.

%H M. R. Sepanski, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p32">On Divisibility of Convolutions of Central Binomial Coefficients</a>, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 8*n*(1 - n^2)/3, n>0. - _R. J. Mathar_, Mar 09 2009

%F E.g.f.: 1 - 8*exp(x)*x^2*(3 + x)/3. - _Stefano Spezia_, Oct 11 2023

%t CoefficientList[Series[(1+x)^2(x^2-6x+1)/(x-1)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,0,-16,-64,-160},40] (* _Harvey P. Dale_, Mar 15 2020 *)

%o (PARI) Vec((1+x)^2*(x^2-6*x+1)/(x-1)^4 + O(x^100)) \\ _Altug Alkan_, Oct 26 2015

%Y Essentially the same as A102860. Cf. A115046, A002928.

%K sign,easy

%O 0,3

%A _Roger L. Bagula_, Apr 07 2008