login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100184
Structured octagonal anti-prism numbers.
1
1, 16, 64, 164, 335, 596, 966, 1464, 2109, 2920, 3916, 5116, 6539, 8204, 10130, 12336, 14841, 17664, 20824, 24340, 28231, 32516, 37214, 42344, 47925, 53976, 60516, 67564, 75139, 83260, 91946, 101216, 111089, 121584, 132720, 144516, 156991, 170164, 184054, 198680
OFFSET
1,2
FORMULA
a(n) = (1/6)*(19*n^3-15*n^2+2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 12*x + 6*x^2)/(1 - x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i = 0..n-1} (n + i)*(n + 2*i). - Bruno Berselli, Feb 14 2018
E.g.f.: exp(x)*x*(6 + 42*x + 19*x^2)/6. - Stefano Spezia, Oct 11 2023
MAPLE
a:=n->(1/6)*(19*n^3-15*n^2+2*n): seq(a(n), n=1..33); # Muniru A Asiru, Feb 14 2018
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + 12 x + 6 x^2)/(1 - x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Feb 15 2018 *)
PROG
(Magma) [(1/6)*(19*n^3-15*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
(GAP) List([1..33], n -> (1/6)*(19*n^3-15*n^2+2*n)); # Muniru A Asiru, Feb 14 2018
CROSSREFS
Cf. A100185 (structured anti-prisms), A100145 (for more on structured numbers).
Sequence in context: A102860 A136264 A266103 * A304845 A190099 A316542
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
STATUS
approved