login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102860 Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters. 13
0, 16, 64, 160, 320, 560, 896, 1344, 1920, 2640, 3520, 4576, 5824, 7280, 8960, 10880, 13056, 15504, 18240, 21280, 24640, 28336, 32384, 36800, 41600, 46800, 52416, 58464, 64960, 71920, 79360, 87296, 95744, 104720, 114240, 124320, 134976, 146224 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

There are two ways to change abc: abc -> bca and abc -> cab, that's why we get 2*C(2n,3). There are 2n*(2n-2) = 4n*(n-1) = 8*C(n,2) cases when the two chosen letters are identical, that's why we get -8*C(n,2). Thanks to Miklos Kristof for help.

A diagonal of A059056. - Zerinvary Lajos, Jun 18 2007

With offset "1", a(n) is 16 times the self convolution of n. - Wesley Ivan Hurt, Apr 06 2015

Number of orbits of Aut(Z^7) as function of the infinity norm (n+2) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 53760. - Philippe A.J.G. Chevalier, Dec 28 2015

LINKS

Stefano Spezia, Table of n, a(n) for n = 2..10000

Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 16*C(n, 3) = 2*C(2*n, 3) - 8*C(n, 2).

From R. J. Mathar, Mar 09 2009: (Start)

G.f.: 16*x^3/(1-x)^4.

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).

a(n) = 8*n*(n-1)*(n-2)/3. (End)

a(n) = 16*A000292(n-2). - J. M. Bergot, May 29 2014

E.g.f.: 8*exp(x)*x^3/3. - Stefano Spezia, May 19 2021

EXAMPLE

a(4) = 64 = 2*C(8,3) - 8*C(4,2) = 2*56 - 8*6 = 112 - 48.

MAPLE

A102860:=n->8*n*(n-1)*(n-2)/3: seq(A102860(n), n=2..50); # Wesley Ivan Hurt, Apr 06 2015

MATHEMATICA

Table[8n(n-1)(n-2)/3, {n, 2, 50}] (* Wesley Ivan Hurt, Apr 06 2015 *)

LinearRecurrence[{4, -6, 4, -1}, {0, 16, 64, 160}, 50] (* Harvey P. Dale, May 20 2021 *)

PROG

(MAGMA) [8*n*(n-1)*(n-2)/3 : n in [2..50]]; // Wesley Ivan Hurt, Apr 06 2015

(PARI) concat([0], Vec(16*x^3/(1-x)^4+O(x^40))) \\ Stefano Spezia, May 22 2021

CROSSREFS

Cf. A000292, A046092, A059056.

Sequence in context: A016802 A309573 A205064 * A136264 A266103 A100184

Adjacent sequences:  A102857 A102858 A102859 * A102861 A102862 A102863

KEYWORD

easy,nonn

AUTHOR

Zerinvary Lajos, Mar 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 07:52 EDT 2022. Contains 355068 sequences. (Running on oeis4.)