login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102863
a(n)=1 if at least one of the first n primes is a divisor of the sum of the first n primes; otherwise a(n)=0.
3
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1
OFFSET
1,1
COMMENTS
a(n) = 0 if and only if n is in A013916. - Robert Israel, Jan 04 2017
LINKS
EXAMPLE
a(2)=0 because none of the first 2 primes (2, 3) is a divisor of 2+3; a(5)=1 because among the first 5 primes (namely, 2,3,5,7,11) there are divisors of 2+3+5+7+11=28.
MAPLE
with(numtheory):
a:=proc(n)
if nops(factorset(sum(ithprime(k), k=1..n)) intersect {seq(ithprime(j), j=1..n)}) >0 then
1
else
0
fi
end:
seq(a(n), n=1..130); # Emeric Deutsch
# alternative:
N:= 500: # to get the first N terms
A:= Vector(N):
S:= 2: P:= 2: p:= 2: A[1]:= 1:
for n from 2 to N do
p:= nextprime(p);
S:= S+p; P:= P*p;
if igcd(S, P) > 1 then A[n]:= 1 fi
od:
convert(A, list); # Robert Israel, Jan 04 2017
MATHEMATICA
a[n_] := Module[{pp = Prime[Range[n]], t}, t = Total[pp]; Boole[AnyTrue[pp, Divisible[t, #]&]]];
Array[a, 100] (* Jean-François Alcover, Jun 16 2020 *)
CROSSREFS
A105783(n) gives number of primes among the first n primes that are divisors of the sum of the first n primes.
Sequence in context: A373157 A179761 A317906 * A131483 A355655 A077052
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Mar 01 2005
EXTENSIONS
Edited and extended by Emeric Deutsch, Apr 19 2005
STATUS
approved