Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 16 2020 18:17:08
%S 1,0,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1
%N a(n)=1 if at least one of the first n primes is a divisor of the sum of the first n primes; otherwise a(n)=0.
%C a(n) = 0 if and only if n is in A013916. - _Robert Israel_, Jan 04 2017
%H Robert Israel, <a href="/A102863/b102863.txt">Table of n, a(n) for n = 1..10000</a>
%e a(2)=0 because none of the first 2 primes (2, 3) is a divisor of 2+3; a(5)=1 because among the first 5 primes (namely, 2,3,5,7,11) there are divisors of 2+3+5+7+11=28.
%p with(numtheory):
%p a:=proc(n)
%p if nops(factorset(sum(ithprime(k),k=1..n)) intersect {seq(ithprime(j),j=1..n)}) >0 then
%p 1
%p else
%p 0
%p fi
%p end:
%p seq(a(n),n=1..130); # _Emeric Deutsch_
%p # alternative:
%p N:= 500: # to get the first N terms
%p A:= Vector(N):
%p S:= 2: P:= 2: p:= 2: A[1]:= 1:
%p for n from 2 to N do
%p p:= nextprime(p);
%p S:= S+p; P:= P*p;
%p if igcd(S,P) > 1 then A[n]:= 1 fi
%p od:
%p convert(A,list); # _Robert Israel_, Jan 04 2017
%t a[n_] := Module[{pp = Prime[Range[n]], t}, t = Total[pp]; Boole[AnyTrue[pp, Divisible[t, #]&]]];
%t Array[a, 100] (* _Jean-François Alcover_, Jun 16 2020 *)
%Y A105783(n) gives number of primes among the first n primes that are divisors of the sum of the first n primes.
%Y Cf. A013916, A136443.
%K easy,nonn
%O 1,1
%A _Giovanni Teofilatto_, Mar 01 2005
%E Edited and extended by _Emeric Deutsch_, Apr 19 2005