login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102865
Base-4 digits are, in order, the first n terms of the sequence (1, 3, 21, 203, 2021, 20203, 202021, 2020203, 20202021, 202020203, ... ).
1
1, 3, 9, 35, 137, 547, 2185, 8739, 34953, 139811, 559241, 2236963, 8947849, 35791395, 143165577, 572662307, 2290649225, 9162596899, 36650387593, 146601550371, 586406201481, 2345624805923, 9382499223689, 37529996894755, 150119987579017, 600479950316067
OFFSET
0,2
FORMULA
4^n = a(n) + A037576(n) for n >= 1.
a(n) + a(n+1) = A039301(n+2).
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Harvey P. Dale, Mar 23 2012
G.f.: 1 + x*(3-3*x-4*x^2)/((1-x)*(1+x)*(1-4*x)). - Colin Barker, Aug 28 2012
MATHEMATICA
FromDigits[IntegerDigits[#], 4]&/@(NestList[FromDigits[Flatten[ IntegerDigits[#]/.{3->{2, 1}, 1->{0, 3}}]]&, 1, 30]) (* or *) LinearRecurrence[{4, 1, -4}, {1, 3, 9}, 31](* Harvey P. Dale, Mar 23 2012 *)
CROSSREFS
Cf. A037576.
Sequence in context: A149017 A149018 A149019 * A046697 A151045 A369389
KEYWORD
base,easy,nonn
AUTHOR
Creighton Dement, Mar 01 2005
EXTENSIONS
More terms from Harvey P. Dale, Mar 23 2012
STATUS
approved